Volume 8, Issue 3 (2022)                   Pharm Biomed Res 2022, 8(3): 199-204 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jalali A, Mahdavinia M, Galehdari H, Baradaran M, Valdi-Biranvand D, Naderi Soorki M. Molecular Characterization of a cDNA Encoding of an Anionic Cysteine-Free Antimicrobial Peptide From the Iranian Scorpion Odontobuthus Doriae Venom Glands. Pharm Biomed Res 2022; 8 (3) :199-204
URL: http://pbr.mazums.ac.ir/article-1-452-en.html
1- Department of Operating Room, Langroud School of Allied Medical Sciences, Guilan University of Medical Sciences, Rasht, Iran.
2- Department of Toxicology, School of Pharmacy, Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
3- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
4- Department of Toxicology, School of Pharmacy, Toxicology Research center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
Abstract:   (1514 Views)
Background: The venom peptides from the scorpion fauna of Iran have been poorly characterized so far.
Objectives: In this study, we identified a cDNA encoding of an anionic cysteine-free antimicrobial peptide from the Iranian yellow scorpion odontobuthus doriae (O.doriae).
Methods: The cDNA sequence of an anionic antimicrobial-peptide (AMP) was determined from the venom gland cDNA library of Iranian yellow scorpion O.doriae and was named ODAMP5. This sequence was characterized by a software. Then, the structure and function of its putative peptide were predicted in a bioinformatics manner. The library was constructed from 6 scorpion venom glands. The cDNA related to ODAMP5 was isolated from one positive clone of the library.
Results: The analysis of ODAMP5 reveals a 51-residue mature peptide with an anionic property that was stable in physiological states. ODAMP5 was similar to anionic peptide Aba-2 from Androctonus bicolor and according to its structure, it can be a member of helical structure AMPs with a new type of putative conserved domain. Putative ODAMP5 has a small size which makes it convenient for synthesis.
Conclusion: Furthermore, we created a framework to express the ODAMP5 peptide for future biomedical and pharmacological studies. ODAMP5 may be a new suitable therapeutic strategy for bacterial infection among a few recognized scorpion venom peptides without disulfide bridges.
Full-Text [PDF 943 kb]   (409 Downloads) |   |   Full-Text (HTML)  (775 Views)  
Type of Study: Original Research | Subject: Biotechnology

References
1. Hanel A, Carlberg C. Vitamin D and evolution: Pharmacologic implications. Biochemical pharmacology. 2020;173:113595. [DOI:10.1016/j.bcp.2019.07.024] [PMID]
2. 2. Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006;92(1):4-8. [DOI:10.1016/j.pbiomolbio.2006.02.016] [PMID]
3. 3. Durá-Travé T, Gallinas-Victoriano F, Chueca-Guindulain MJ, Berrade-Zubiri S, Urretavizcaya-Martinez M, Ahmed-Mohamed L. Assessment of vitamin D status and parathyroid hormone during a combined intervention for the treatment of childhood obesity. Nutr Diabetes. 2019;9(1):1-8. [DOI:10.1038/s41387-019-0083-z] [PMID] [PMCID]
4. 4. Gil A, Plaza-Diaz J, Mesa MD. Vitamin D: classic and novel actions. Ann Nutr Metab. 2018;72(2):87-95. [DOI:10.1159/000486536] [PMID]
5. 5. Fumoto T, Takeshita S, Ito M, Ikeda K. Physiological functions of osteoblast lineage and T cell-derived RANKL in bone homeostasis. J Bone Miner Res. 2014;29(4):830-42. [DOI:10.1002/jbmr.2096] [PMID]
6. 6. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6):1689S-96S. [DOI:10.1093/ajcn/80.6.1689S] [PMID]
7. 7. Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83(4):754-9. [DOI:10.1093/ajcn/83.4.754] [PMID]
8. 8. Silberstein M. Vitamin D: A simpler alternative to tocilizumab for trial in COVID-19? Med Hypotheses. 2020;140:109767. [DOI:10.1016/j.mehy.2020.109767] [PMID] [PMCID]
9. 9. Feige J, Moser T, Bieler L, Schwenker K, Hauer L, Sellner J. Vitamin D Supplementation in Multiple Sclerosis: A Critical Analysis of Potentials and Threats. Nutrients. 2020;12(3):783. [DOI:10.3390/nu12030783] [PMID] [PMCID]
10. 10. Haridas K, Holick MF, Burmeister LA. Hypercalcemia, nephrolithiasis, and hypervitaminosis D precipitated by supplementation in a susceptible individual. Nutrition. 2020;74:110754. [DOI:10.1016/j.nut.2020.110754] [PMID]
11. 11. Villa-Etchegoyen C, Lombarte M, Matamoros N, Belizán JM, Cormick G. Mechanisms involved in the relationship between low calcium intake and high blood pressure. Nutrients. 2019;11(5):1112. [DOI:10.3390/nu11051112] [PMID] [PMCID]
12. 12. Simonini M, Casanova P, Citterio L, Messaggio E, Lanzani C, Manunta P. Endogenous ouabain and related genes in the translation from hypertension to renal diseases. Int J Mol Sci. 2018;19(7):1948. [DOI:10.3390/ijms19071948] [PMID] [PMCID]
13. 13. Bhattarai HK, Shrestha S, Rokka K, Shakya R. Vitamin D, Calcium, Parathyroid Hormone, and Sex Steroids in Bone Health and Effects of Aging. J Osteoporos. 2020;2020. [DOI:10.1155/2020/9324505] [PMID] [PMCID]
14. 14. Muscogiuri G. Vitamin D: past, present and future perspectives in the prevention of chronic diseases. Eur J Clin Nutr. 2018;72(9):1221-5. [DOI:10.1038/s41430-018-0261-4] [PMID]
15. 15. Sintzel MB, Rametta M, Reder AT. Vitamin D and multiple sclerosis: a comprehensive review. Neurol Ther. 2018;7(1):59-85. [DOI:10.1007/s40120-017-0086-4] [PMID] [PMCID]
16. 16. Galior K, Grebe S, Singh R. Development of vitamin D toxicity from overcorrection of vitamin D deficiency: a review of case reports. Nutrients. 2018;10(8):953. [DOI:10.3390/nu10080953] [PMID] [PMCID]
17. 17. Ferreira C, Khan I, Badshah A, Singhal P. Hyper-Vitaminosis D.
18. 18. Zhu Y, Qu J, He L, Zhang F, Zhou Z, Yang S, et al. Calcium in vascular smooth muscle cell elasticity and adhesion: novel insights into the mechanism of action. Front Physiol. 2019;10:852. [DOI:10.3389/fphys.2019.00852] [PMID] [PMCID]
19. 19. Houghton CC, Lew SQ. Long-term hypervitaminosis D-induced hypercalcaemia treated with glucocorticoids and bisphosphonates. BMJ Case Reports CP. 2020;13(4):e233853. [DOI:10.1136/bcr-2019-233853] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Pharmaceutical and Biomedical Research

Designed & Developed by : Yektaweb