Volume 5, Issue 2 (2019)                   mazums-pbr 2019, 5(2): 38-48 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Selsi N J, Barua L, Bhattacharjee D, Rahman G, Zannat S S, Munia N A, et al . Computer-aided rational design of acyclovir analogs to inhibit purine nucleoside phosphorylase. mazums-pbr. 2019; 5 (2) :38-48
URL: http://pbr.mazums.ac.ir/article-1-252-en.html
Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066
Abstract:   (119 Views)
Purine nucleoside phosphorylase (PNP) is one of the major enzymes in the purine salvage pathway. It is responsible for the elevation of deoxyguanosine, and thus considered as the potent target in T-cell lymphoma. The present study examined acyclovir, reported as a low-affinity PNP inhibitor, for the rational design of new acyclovir derivatives by incorporating halogens, hydroxyl, and bulky amino groups. The molecular actions of designed derivatives were investigated by employing density functional theory, molecular docking, and binding energy calculations. The results revealed that the newly designed compounds were highly stable and showed more affinity to PNP than the parent compound, acyclovir. The quantum mechanics and molecular docking studies suggested that modification of side chains with bulky polar groups provided better binding affinities than substitutions with halogens. The resultant derivatives have strong polar interactions like His257 and Tyr88. Furthermore, the designed derivatives were within the ideal range of ADMET (absorption, distribution, metabolism, elimination, and toxicity) analysis. Considering that, these findings recommend further validation of designed acyclovir derivatives in wet lab confirmatory analysis with the emphasis on the further improvements in the treatment of T-cell-mediated diseases.
Full-Text [PDF 1438 kb]   (51 Downloads)    
Type of Study: Research | Subject: Mollecular Modeling

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2019 All Rights Reserved | Pharmaceutical and Biomedical Research

Designed & Developed by : Yektaweb