Volume 3, Issue 1 (2017)                   Pharm Biomed Res 2017, 3(1): 1-7 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zamani E, Shokrzadeh M, Fallah M, Shaki F. A review of acrylamide toxicity and its mechanism. Pharm Biomed Res 2017; 3 (1) :1-7
URL: http://pbr.mazums.ac.ir/article-1-146-en.html
1- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
2- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
Abstract:   (12490 Views)

Acrylamide (AA) is an important industrial chemical agent that is mainly used in the production of polymers and copolymers. Recently it has been attention because of its production in the diet at high-temperature (>120 ºC) processes such as cooking, frying, toasting, roasting or baking of high carbohydrate foods. According to high exposure to acrylamide, recognition of its toxic effect is necessary. Neurotoxicity, reproductive toxicity and immunotoxicity of AA were observed in several studies. There isn’t a clear mechanism that justifies this toxicity. In this study we reviewed the mechanisms of AA toxicity especially oxidative stress and apoptosis. AA can cause neurotoxicity, reproductive toxicity and genotoxicity on animal models. It showed neurotoxicity in human. We suggested the oxidative stress is the main factor for inducing of acrylamide toxicities. We advised that modifying of food processing methods can be as a good way for decreasing of AA production in foods.

Full-Text [PDF 460 kb]   (8340 Downloads)    
Type of Study: Review article | Subject: Toxicology

References
1. Dearfield KL, Abernathy CO, Ottley MS, Brantner JH, Hayes PF. Acrylamide: its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity. Mutat Res 1988;195:45-77. [DOI:10.1016/0165-1110(88)90015-2]
2. Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 2002;50:4998-5006. [DOI:10.1021/jf020302f]
3. Claus A, Carle R, Schieber A. Acrylamide in cereal products: A review. J Cereal Sci 2008;47:118-33. [DOI:10.1016/j.jcs.2007.06.016]
4. Keramat J, LeBail A, Prost C, Jafari M. Acrylamide in baking products: A review article. Food Bioprocess Technol 2011;4:530-43. [DOI:10.1007/s11947-010-0495-1]
5. Fang J, Liang CL, Jia XD, Li N. Immunotoxicity of Acrylamide in Female BALB/c Mice. Biomed Environ Sci 2014;27:401-9.
6. Hawley GG, Lewis RJ. Hawley's condensed chemical dictionary. Van Nostrand Reinhold;(1997).
7. Besaratinia A, Pfeifer GP. A review of mechanisms of acrylamide carcinogenicity. Carcinogenesis 2007;28:519-28. [DOI:10.1093/carcin/bgm006]
8. Sumner SC, Fennell TR, Moore TA, Chanas B, Gonzalez F, Ghanayem BI. Role of cytochrome P450 2E1 in the metabolism of acrylamide and acrylonitrile in mice. Chem Res Toxicol 1999;12:1110-6. [DOI:10.1021/tx990040k]
9. Riboldi BP, Vinhas ÁM, Moreira JD. Risks of dietary acrylamide exposure: A systematic review. Food Chem 2014;157:310-22. [DOI:10.1016/j.foodchem.2014.02.046]
10. Hashimoto K, Sakamoto J, Tanii H. Neurotoxicity of acrylamide and related compounds and their effects on male gonads in mice. Arch Toxicol 1981;47:179-89. [DOI:10.1007/BF00368678]
11. Edwards PM. The distribution and metabolism of acrylamide and its neurotoxic analogues in rats. Biochem Pharmacol 1975;24:1277-82. [DOI:10.1016/0006-2952(75)90336-6]
12. Dixit R, Mukhtar H, Seth PK, Murti CR. Conjugation of acrylamide with glutathione catalysed by glutathione-S-transferases of rat liver and brain. Biochem Pharmacol 1981;30:1739-44. [DOI:10.1016/0006-2952(81)90003-4]
13. Ramsey J, Young J, Gorzinski S. Acrylamide: toxicodynamics in rats. Health and Environmental Sciences, Toxicology Research Laboratory, Dow Chemical USA, Midland, MI 1984.
14. Miller M, Carter D, Sipes I. Pharmacokinetics of acrylamide in Fisher-334 rats. Toxicol Appl Pharmacol 1982;63:36-44. [DOI:10.1016/0041-008X(82)90024-2]
15. Zhang Y, Zhang G, Zhang Y. Occurrence and analytical methods of acrylamide in heat-treated foods: Review and recent developments. J Chromatogr A 2005;1075:1-21. https://doi.org/10.1016/j.chroma.2005.03.086 [DOI:10.1016/j.chroma.2005.03.123]
16. Eriksson S. Acrylamide in food products: Identification, formation and analytical methodology. 2005.
17. Dybing E, Farmer PB, Andersen M, Fennell TR, Lalljie SP, Müller DJ, et al. Human exposure and internal dose assessments of acrylamide in food. Food Chem Toxicol 2005;43:365-410. [DOI:10.1016/j.fct.2004.11.004]
18. Petersen BJ, Tran N. Exposure to acrylamide. In Chemistry and safety of acrylamide in food. Springer;2005. p^pp 63-76. [DOI:10.1007/0-387-24980-X_5]
19. Svensson K, Abramsson L, Becker W, Glynn A, Hellenäs K-E, Lind Y, et al. Dietary intake of acrylamide in Sweden. Food Chem Toxicol 2003;41:1581-6. [DOI:10.1016/S0278-6915(03)00188-1]
20. Dybing E, Sanner T. Risk assessment of acrylamide in foods. Toxicol Sci 2003;75:7-15. [DOI:10.1093/toxsci/kfg165]
21. Arisseto AP, de Figueiredo Toledo MC, Govaert Y, van Loco J, Fraselle S, Degroodt J-M, et al. Contribution of selected foods to acrylamide intake by a population of Brazilian adolescents.LWT - Food Sci technol 2009;42:207-11. [DOI:10.1016/j.lwt.2008.05.024]
22. Exon J. A review of the toxicology of acrylamide. J Toxicol Environ Health B 2006;9:397-412. [DOI:10.1080/10937400600681430]
23. Liu Z, Song G, Zou C, Liu G, Wu W, Yuan T, et al. Acrylamide induces mitochondrial dysfunction and apoptosis in BV-2 microglial cells. Free Radic Biol Med 2015;84:42-53. [DOI:10.1016/j.freeradbiomed.2015.03.013]
24. LoPachin RM. The changing view of acrylamide neurotoxicity. Neurotoxicol 2004;25:617-30. [DOI:10.1016/j.neuro.2004.01.004]
25. Specer PS, Schaumburg HH. A review of acrylamide neurotoxicity. In Part II Experimental animal neurotoxicity and pathologic mechanisms. Can J Neurol Sci 1974;1:152-69. [DOI:10.1017/S0317167100119201]
26. Hagmar L, Törnqvist M, Nordander C, Rosén I, Bruze M, Kautiainen A, et al. Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose. Scand J Work Environ Health 2001:219-26. [DOI:10.5271/sjweh.608]
27. Chen J-H, Chou C-C. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells. Food Chem Toxicol 2015;82:27-35. [DOI:10.1016/j.fct.2015.04.030]
28. Pelucchi C, Galeone C, Levi F, Negri E, Franceschi S, Talamini R, et al. Dietary acrylamide and human cancer. Int J Cancer 2006;118:467-71. [DOI:10.1002/ijc.21336]
29. Krishnakumar T, Visvanathan R. Acrylamide in Food Products: A Review. J Food Process Technol 2014;5:2.
30. Hogervorst JG, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA. A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidemiol Biomarkers Prevent 2007;16:2304-13. [DOI:10.1158/1055-9965.EPI-07-0581]
31. Hogervorst JG, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA. Dietary acrylamide intake and the risk of renal cell, bladder, and prostate cancer. Am J of Clin Nutr 2008;87:1428-38.
32. Alzahrani HAS. Protective effect of l-carnitine against acrylamide-induced DNA damage in somatic and germ cells of mice. Saudi J Biol Sci 2011;18:29-36. [DOI:10.1016/j.sjbs.2010.07.004]
33. Tyl RW, Friedman MA. Effects of acrylamide on rodent reproductive performance. Reprod Toxicol 2003;17:1-13. [DOI:10.1016/S0890-6238(02)00078-3]
34. Tyl RW, Marr MC, Myers CB, Ross WP, Friedman MA. Relationship between acrylamide reproductive and neurotoxicity in male rats. Reprod Toxicol 2000;14:147-57. [DOI:10.1016/S0890-6238(00)00066-6]
35. Programme WHOFS. Health Implications of Acrylamide in Food: Report of a Joint FAO/WHO Consultation, WHO Headquarters, Geneva, Switzerland, 25-27 June 2002. Diamond Pocket Books (P) Ltd.;(2002).
36. Wang H, Huang P, Lie T, Li J, Hutz RJ, Li K, et al.tive toxicity of acrylamide-treated male rats. Reprod Toxicol 2010;29:225-30. [DOI:10.1016/j.reprotox.2009.11.002]
37. Ali SF, Hong J-S, Wilson WE, Uphouse LL, Bondy SC. Effect of acrylamide on neurotransmitter metabolism and neuropeptide levels in several brain regions and upon circulating hormones. Arch Toxicol 1983;52:35-43. [DOI:10.1007/BF00317980]
38. Wei Q, Li J, Li X, Zhang L, Shi F. Reproductive toxicity in acrylamide-treated female mice. Reprod Toxicol 2014;46:121-8. [DOI:10.1016/j.reprotox.2014.03.007]
39. Jin Y, Pan X, Fu Z. Exposure to bifenthrin causes immunotoxicity and oxidative stress in male mice. Environ Toxicol 2014;29:991-9. [DOI:10.1002/tox.21829]
40. Mojtahedzadeh M, Ahmadi A, Mahmoodpoor A, Beigmohammadi MT, Abdollahi M, Khazaeipour Z, et al. Hypertonic saline solution reduces the oxidative stress responses in traumatic brain injury patients. J Res Med Sci 2014;19:867.
41. Shaki F, Pourahmad J. Mitochondrial toxicity of depleted uranium: Protection by beta-glucan. IJPR 2013;12:131.
42. Yousef M, El-Demerdash F. Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicol 2006;219:133-41. [DOI:10.1016/j.tox.2005.11.008]
43. Shaki F, Hosseini MJ, Ghazi-Khansari M, Pourahmad J. Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochim Biophys Acta 2012;1820:1940-50. [DOI:10.1016/j.bbagen.2012.08.015]
44. Chen W, Shen Y, Su H, Zheng X. Hispidin derived from Phellinus linteus affords protection against acrylamide-induced oxidative stress in Caco-2 cells. Chem Biol Interact 2014;219:83-9. [DOI:10.1016/j.cbi.2014.05.010]
45. Naruszewicz M, Zapolska-Downar D, Kośmider A, Nowicka G, Kozłowska-Wojciechowska M, Vikström AS, et al. Chronic intake of potato chips in humans increases the production of reactive oxygen radicals by leukocytes and increases plasma C-reactive protein: a pilot study. Am J Clin Nutr 2009;89:773-7. [DOI:10.3945/ajcn.2008.26647]
46. Renehan AG, Booth C, Potten CS. What is apoptosis, and why is it important? Br Med J 2001;322:1536. [DOI:10.1136/bmj.322.7301.1536]
47. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35:495-516. [DOI:10.1080/01926230701320337]
48. Nakagawa-Yagi Y, Choi D-K, Ogane N, Shimada S-i, Seya M, Momoi T, et al. Discovery of a novel compound: insight into mechanisms for acrylamide-induced axonopathy and colchicine-induced apoptotic neuronal cell death. Brain Res 2001;909:8-19. [DOI:10.1016/S0006-8993(01)02608-7]
49. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44-84. [DOI:10.1016/j.biocel.2006.07.001]
50. Circu ML, Rodriguez C, Maloney R, Moyer MP, Aw TY. Contribution of mitochondrial GSH transport to matrix GSH status and colonic epithelial cell apoptosis. Free Radic Biol Med 2008;44:768-78. [DOI:10.1016/j.freeradbiomed.2007.09.011]
51. Rodríguez-Ramiro I, Ramos S, Bravo L, Goya L, Martín MÁ. Procyanidin B2 and a cocoa polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway. J Nutr Biochem 2011;22:1186-94. [DOI:10.1016/j.jnutbio.2010.10.005]
52. Li S-x, Cui N, Zhang C-l, Zhao X-l, Yu S-f, Xie K-q. Effect of subchronic exposure to acrylamide induced on the expression of bcl-2, bax and caspase-3 in the rat nervous system. Toxicol 2006;217:46-53. [DOI:10.1016/j.tox.2005.08.018]
53. Chen Z, Chen Z, Chen H, Chen H, Zhou T, Lu H. Schwann cell apoptosis in Wallerian-degenerated sciatic nerve of the rat. Chin J Traumatol 2004;7:220-8.
54. Okuno T, Matsuoka M, Sumizawa T, Igisu H. Involvement of the extracellular signal-regulated protein kinase pathway in phosphorylation of p53 protein and exerting cytotoxicity in human neuroblastoma cells (SH-SY5Y) exposed to acrylamide. Arch Toxicol 2006;80:146-53. [DOI:10.1007/s00204-005-0022-8]
55. Morrison RS, Kinoshita Y, Johnson MD, Guo W, Garden GA. p53-dependent cell death signaling in neurons. Neurochem Res 2003;28:15-27. [DOI:10.1023/A:1021687810103]
56. Sumizawa T, Igisu H. Apoptosis induced by acrylamide in SH-SY5Y cells. Arch Toxicol 2007;81:279-82. [DOI:10.1007/s00204-006-0145-6]
57. Liu S, Jiang L, Zhong T, Kong S, Zheng R, Kong F, et al. Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro. PLoS One 2015;10:e0135818. [DOI:10.1371/journal.pone.0135818]
58. Igisu H, Goto I, Kawamura Y, Kato M, Izumi K. Acrylamide encephaloneuropathy due to well water pollution. J Neurol Neurosurg Psychiatry 1975;38:581-4. [DOI:10.1136/jnnp.38.6.581]
59. Guo J, Yu D, Lv N, Bai R, Xu C, Chen G, et al. Relationships between acrylamide and glycidamide hemoglobin adduct levels and allergy-related outcomes in general US population, NHANES 2005–2006. Environmental Pollution.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Pharmaceutical and Biomedical Research

Designed & Developed by : Yektaweb