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ABSTRACT

Background: Plantago species contain aucubin and catalpol iridoid glycosides used in

Copyright© 2020, The Authors. .. o0
traditional medicine for many purposes.

Objectives: To accelerate the utilization of aucubin and catalpol in Plantago species, research
should be focused on introducing advanced purification and detection methods. In this regard,
the therapeutic activities of aucubin and catalpol compounds are mentioned to confirm their

Article info: : effectiveness in medicinal uses.
Received: 21 Dec 2022 : Methods: An extensive literature search was conducted using the keywords “Aucubin and
Accepted: 15 Jan 2023 . Catalpol + Plantago” in the public domains of Google scholar.

Results: The iridoid patterns exhibited a significant correlation with morphological and
other chemical specifications of the representatives of the genus Plantago. Commonly,
iridoid glycosides are detected with gas chromatography, liquid chromatography, thin-layer
chromatography, high-performance liquid chromatography (HPLC), high-performance thin-
layer chromatography (HPTLC), and capillary electrophoresis techniques. The most common
methods are HPLC and HPTLC. Aucubin and catalpol are active compounds possessing
Keywords: biological activities, including anti-cancer, anti-aging, anti-inflammatory, anti-oxidant,

Anti-cancer, Aucubin, hepatoprotective, osteoprotective, and neuroprotective properties.

Catalpol, Iridoid Conclusion: This review article comprehensively summarizes cytotoxic activities and
Glycoside, Isolation, . detection methods of aucubin and catalpol in Plantago species. The results suggest that
Plantago spp. :  Plantago species and their metabolites may benefit human health beyond their traditional uses.
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Introduction

ridoid was first isolated at the end of the 19®

century. But, the principal structure of the iri-

doid was identified in 1958 by Halpern and

Schmid. Then, several scientific studies were

conducted on iridoids relating to agriculture,

biosynthesis, botany, and medicinal uses. Up
to now, hundreds of iridoids have been recognized in di-
verse sources [1]. Iridoids are categorized into iridoid gly-
cosides, non-glycosidic iridoids or aglycone, bisiridoids,
and secoiridoids groups [2]. Iridoid glycosides are mono-
terpenes in at least 57 plant families [3]. Their function in
plants is mostly protection [4]. Iridoids can be found in the
following families: Lamiaceae, Acanthaceae, Plantaginace-
ae, Gentianales, Cornales Scrophulariaceae, and Rubiaceae
[5-8]. Especially, aucubin and catalpol are found in plant
subclasses of Asteridae, including Loganiaceae, Lamiace-
ae, Ericaceae, Gentianaceae, Verbenaceae, Rubiaceae, Ole-
aceae, Scrophulariaceae, Valerianaceae, Plantaginaceae,
and Menyanthaceae [9].

Consequently, studies on Plantago species have just es-
tablished growing attention owing to valuable components
in these plants, such as aucubin and catalpol. So, the pres-
ent study reviewed the cytotoxic properties and detection
methods of aucubin and catalpol to create a comprehensive
reference for utilizing these compounds.

Aucubin and Catalpol Names

Aucubin is known with CAS: 479-98-1 and chemical for-
mula: (2S,3R,4S,5S,6R)-2-[[(1S,4aR,5S,7aS-5-hydroxy-7-
(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-
1-ylJoxy]-6-(hydroxymethyl)oxane-3,4,5-triol [10].

Compound summary
Catalpol is introduced with CAS: 2415-24-9 and chemical

formula: (2S,3R,4S,5S,6R)-2-{[(1a8S,1bS,2S,5aR,6S,6aS)-
6-Hydroxy-1a-(hydroxymethyl)-1a,1b,2,5a,6,6ahexahydr

Figure 1. Aucubin and catalpol structures
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ooxireno[20,30:4,5]cyclopenta[ 1,2-c]pyran-2-ylJoxy}-6-
(hydroxymethyl)oxane-3,4,5-triol [10].

Aucubin and catalpol are iridoid glycosides used in herbal
medicine (Figure 1).

Biosynthesis of Aucubin and Catalpol

Iridoids are a group of cyclopentanone monoterpenes
found in plants as glycosides and regularly linked to glu-
cose at C-1. The backbone of carbocyclic iridoids (Figure
2) is generally a cyclopentane unit attached to a dihydropy-
ran ring. On the other hand, secoiridoids are formed due to
C-7/C-8 cleavage. These compounds have been classified
as chemotaxonomic markers, and their presence provides
evidence to explain many species whose taxonomic bound-
aries are unclear [11, 12].

Iridoids are often found as glucosides, featuring a b-D-
glucopyranosyl unit attached at C-1 via a b-hemiacetalic
bond (R = glucose) [13].

There are two main biosynthetic pathways for producing
iridoids (Figure 3). The first pathway makes compounds
that generally originate in Gentianales and Cornales orders.
In this pathway, deoxyloganic acid is synthesized, the pre-
cursor of many iridoids with 8 stereochemistry, such as
secologanin and loganin. The latter is caused by the oxida-
tive cleavage of the C-7/C-8 linkage of the cyclopentane
ring. After an intricate synthesis including tryptamine, sec-
ologanin gives rise to indole alkaloids; vinblastine, vincris-
tine, and reserpine, among others, are regularly discovered
in the families Rubiaceae, Apocynaceae, and Loganiaceae,
order Gentianales. Another group of iridoids is biosyntheti-
cally created by the second pathway. This pathway pro-
duces 8-epi-deoxyloganic acid, a precursor to iridoids with
8-a carbon substituent, and both C-4 carboxylated and C-4
decarboxylated carbocyclic iridoids, for example, ipolami-
ide and aucubin, respectively. These compounds are almost
particularly established in families of Lamiales [14].



http://pbr.mazums.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en
http://pbr.mazums.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en

PBR April 2023. Volume 9. Number 2

Pharmaceutical & Biomedical Research

0.8 1 R
9
Carbocycliciridodid Secoiridoid
Figure 2. Basic structure of iridoids ﬁ
HO

A S Geranid

‘| I

(@) OH
X X
: >
O
~OGIe OGlc
Deoxygenipoisi dic acid a-epideoxyloanic acid
|
(e) OH
X
HO = l l
(@)
OGlc
Loganin HO
X
O
OGle HO OGle
Lponlamiide Aucubin
OGIc ——> Complex inole alkaloids
Secologenin
Figure 3. Iridoid biosynthesis from the pathway I and II, adapted from Jensen (1992) [14] PBR

PBR

—
87

Rahamouz-Haghighi S. Cytotoxic Effect and Detection Methods of Aucubin and Catalpol in Plantago spp. PBR. 2023; 9(2):85-114



http://pbr.mazums.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en
http://pbr.mazums.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en

April 2023. Volume 9. Number 2

Rensted et al. have revealed the biosynthesis of aucubin
and catalpol, mainly in Plantago major (Figure 4) [15].

Distribution of Aucubin and Catalpol in the
Plant Kingdom

Aucubin was first identified in Aucuba japonica in
1905. However, it is also found in many other natural
plants such as Plantago asiatica L, Eucommia ulmoides
Oliv., and Aucuba japonica Thunb [16]. Aucubin is the
most common compound in the iridoid glycoside class
[8]. Aucubin is also an intermediate of catalpol (Figure
3) [17]. Catalpol iridoid glucoside is broadly dispensed in
many plant families and is mainly acquired from Rehm-
annia glutinosa Libosch root [18]. The selection for ca-
talpol may have resulted in a reduction in aucubin con-
centration [19]. Aucubin and catalpol can be applied as
potential chemotaxonomic markers to regulate the quality
of different plant extracts, such as Plantago species [20].

Plantain is known to have two important aucubin and
catalpol compounds [21]. Aucubin is present in almost
all Plantago species, whereas catalpol or its derivatives
have been reported in some species [22]. Iridoid glyco-
side concentration also changes with the plant’s devel-
opmental parts, age, genetic, and environmental factors
such as weather, time of day, soil status, and arbuscular
mycorrhizal fungi [3, 23-35]. Temperature, UV light,
and soil nutrient conditions can alter the content of the
secondary metabolites of plantain [36]. In some studies,
the mean content of catalpol in the leaves of P. lanceo-
lata was lower than the aucubin content [33, 37, 38],
although, in one study, the opposite state was reported
[3]- The contents of catalpol in P. lanceolata interrelated
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Figure 4. Biosynthetic pathway to aucubin and catalpol [15]
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adversely with leaf age and the total number of leaves
[35]. In Bowers and Stamp’s study, in genotypes of P
lanceolata, the amount of aucubin was more in interme-
diate leaves compared to mature leaves, while catalpol
content was higher in intermediate and young leaves
[25]. Increasing leaf age leads to an increase in aucubin
content relative to total iridoid glycosides [25]. On the
other hand, genotype significantly affects iridoid glyco-
side content, although an individual plant is quite het-
erogeneous in terms of iridoid glycoside content. New
leaves have twice as many iridoid glycosides as mature
leaves [25]. Lastly, Bowers and Stamp concluded that
as leaves age, less catalpol is produced, breaks down
faster, and translocation occurs in the leaf [25]. Lampert
and Bowers indicated that aucubin is most in old leaves,
while catalpol is high in young ones [39]. The amounts
of aucubin and catalpol and the ratio of catalpol to total
iridoid glycosides are impassioned by interactions be-
tween the time of harvest and leaf age [40]. The amounts
of catalpol in new leaves increase between the harvests,
although, in intermediate and mature leaves, harvest date
showed no significant influence on catalpol content [40].

De Deyn et al. showed that among the full sibling
families of P. lanceolata, plants contained high constitu-
tive levels of defensive iridoid glycosides in leaves and
roots. They reported that the concentration of aucubin
was higher than that of catalpol and was found more in
the root than in the shoot tissue [41]. The difference in
constitutive iridoid glycoside values in P. lanceolata is
genetically regulated to some extent [25-27, 32].

Furthermore, environmental and ontogeny strongly
affect iridoid glycoside amounts in P. lanceolata. Sea-
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sonal changes probably affect the content of bioactive
compounds in plantain leaves in different ways. So-
lar emission, nutrient disposal, and air temperature are
major issues. Average levels differ among habitats and
populations [36] and are mostly higher in plants grown
under high light and low nutrient or water situations [28,
37]. Tamura reported that nitrogen source and low light
intensity forcefully suppressed the accumulation of au-
cubin in plantain leaves but had no effect on catalpol
concentration [36]. Tamura also explained that relatively
high air temperatures (20°C/18°C, day/night) enhanced
aucubin and catalpol contents. Therefore, plants grown
under high temperatures can accumulate higher aucubin
than those produced in low air temperatures (15°C/10°C,
day/night) [36]. In total, Tamura and Nishibe assumed
that the content of aucubin is more when the air tempera-
ture is optimal for growth [34].

Tamura and Nishibe investigated the effect of seasonal
changes in the content of bioactive compounds in plan-
tain leaves [34]. The amount of aucubin increased from
late spring to midfall, but in midsummer, aucubin lev-
els were relatively constant. In late fall, aucubin levels
gradually decreased in Grasslands Lancelot (0.13% °C
1 and Ceres Tonic (0.20% °C), relative to the decline
in air temperature from 14.7°C to 10.7°C. However, in
midfall, when the temperature was still around 20°C, the
levels of aucubin in both cultivars’ leaves were the high-
est. On other hand, catalpol content was very low rela-
tive to the contents of aucubin. The seasonal changes in
the amount of catalpol were less visible than in aucubin,
so the concentration of catalpol increased slightly dur-
ing the growing season, but its amount was low in the
middle of summer. The less clear-cut changes in catalpol
can be due to the low base level of its synthesis, which
does not respond to environmental changes. However, in
Nieminen et al. study, catalpol contents were more than
aucubin in mid- and late-summer [42].

Bowers et al. also studied seasonal variations in aucu-
bin and catalpol amounts in plantain leaves [43]. Plants
were harvested at 2-week intervals from late spring to
early fall (4 times). They showed a significant increase
in aucubin and catalpol content during the growing sea-
son, but the levels of the compounds decreased in plants
harvested in mid-summer compared to those harvested
on the other three sampling dates. Since the air tempera-
ture in midsummer was very high (around 25-30°C), this
result agrees with the previous explanation [34]. Further-
more, P. lanceolata stores more catalpol when grown in
soils conditioned by grass species [44].

April 2023. Volume 9. Number 2

It is usually presumed that medicinal plants, for their
pharmacological uses, should be dried at less than 60°C
to minimize the loss of bioactive compounds. Therefore,
the concentration of bioactive compounds gradually
degenerated in the early drying stages. The reason for
the decay in the amounts of catalpol and aucubin could
be the presence of enzymes in charge of their degrada-
tion. The degradation of iridoid glycosides is because of
B-glucosidase action. The activities of these putative en-
zymes can be neutralized after about 3 and 24 h after the
start of drying under natural climatic status and at 60°C,
respectively since the compounds’ levels are fixed after
these times [34]. Finally, it is suggested that midfall is the
best time to harvest plantain for medicinal purposes be-
cause the amounts of the active compounds progressively
decrease in the early stages of drying both under natural
climatic conditions and at a temperature of 60°C [34].

Aucubin and Catalpol Content in Different
Plant Parts and In Vitro Cultures

Plantain is applied in traditional medicines and for pas-
ture. As that aucubin is a precursor in catalpol biosynthe-
sis, several studies assessed the content of iridoid glyco-
sides in plantain under different conditions, including the
following studies. Aucubin is formed in plantain at very
high levels, up to 3% of dry weight, depending on vari-
ous aspects of the genotype, soil fertility, and so on [28,
32,45]. The content of iridoid glycosides, including aucu-
bin and catalpol, in a natural population of P. lanceolata,
can attain even 9% of dry matter [3]. With increasing leaf
age and dry summer conditions, the levels of these com-
pounds increase. Also, cutting the surfaces in detached
leaves can significantly increase them [25, 30, 46].

Another study reported that the level of aucubin and
catalpol in seven Plantago species was up to 0.27% and
1.81% of dry leaf weight, respectively [47]. Further-
more, aucubin and catalpol production increased over
time from 0.003% to 8.86% dry weight from seeing
seedling pre-reproductive plants [48]. A significant in-
teraction between plant age and tissue indicated differ-
ences in iridoid glycoside content between shoots and
roots during plant growth. The results are presented in
three cases. First, the average of iridoid glycosides was
three times higher in the shoots compared to the roots.
Second, the mean group differences in aucubin and ca-
talpol among all 7 age classes were similar for the shoot
and root tissues. Third, the concentration of aucubin in
the shoot compared to the total iridoid glycosides caused
more changes during plant ontogeny [48]. Pellissier et
al. noted that total iridoid glycosides content, particularly
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Table 1. The content of aucubin (AU) and catalpol (CA) in different parts of Plantago species
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Content in Dry

Content in Dry

Content in Dry

Plant Species Plant Part Weight (AU) Weight (CA) Weight (IG) Method Reference

P. lanceolata Leaf 1.47%-4.11% 0.70%-5.04% 2.25%-7.74% GC [25]
P. lanceolata Leaf 0.6%-4.4% 0.4%-3% 1.1%-7.3% GC [30]
P. lanceolata Dried plant 0.02%-0.26% 0.23-0.36% 0.39-0.49% GC-FID [53]
P. lanceolata Leaf 0.46% 0.32% 0.90% GC-MS [54]
P. major Leaf 0.07% n.d 0.12% GC-MS [54]

P. lanceolata Leaf 0.92% 0.44% 1.39% GC-FID [55]
P. lanceolata Root 0.98% 0.48% 1.50% GC-FID [55]
P. lanceolata Stalk 1.01% 0.85% 1.91% GC-FID [55]
P. lanceolata Spike 0.67% 1.15% 2.23% GC-FID [55]
P. lanceolata Leaf 0.30%-%1.00 0.24%-0.74% (n.d) HPLC [56]
P. altissima Leaf 0.092% 0.131% n.d MEKC [47]
P. argentea Leaf 0.273% 1.809% n.d MEKC [47]
P. holosteum subsp. Depauperata Leaf 0.077% n.d nd MEKC [47]
P. lagopus Leaf 0.072% 0.082% n.d MEKC [47]
P. maritima Leaf 0.027% n.d n.d MEKC [47]
P. lanceolata Leaf 0.115% 0.159% n.d MEKC [47]
P. lanceolata Leaf 0.33%-1.73% 0.22%-1.25% n.d HPLC [57]
P. lanceolata Leaf 0.55%-4.93% 1.57%-6.20% 2.15%-8.60% HPLC [58]
P. lanceolata Leaf 0.65%-4.18% 0.0%-0.121% n.d HPLC [59]
P. lanceolata Shoot 0.1%-2.2% 0.0%-1.50% n.d HPLC [41]
P. lanceolata Root 0.5%-2.9% 0.0%-1.00% n.d HPLC [41]
P. asiatica Leaf 9358ug/g 1346 pg/g n.d LC [60]
P. asiatica Seed 104.2 ug/g 179.6 ug/g n.d LC [60]
P. asiatica Roasted Seeds 0.00 171.2 ug/g n.d LC [60]
P. asiatica Seed 160.7ug/g 105.1 ug/g 211.8 ug/g HPLC [60]
P. lanceolata Leaf 3.5% 0.6% 4.1% GC-FID [39]
P. major Leaf 0.77% nd 0.77% GC-FID [39]

P. lanceolata Leaf 0.68% 0.89% n.d CE-MEKC [61]
P. altissima Leaf 0.55% 0.66% n.d CE-MEKC [61]
P. atrata Air-dried 9.28% nd n.d HPLC [62]

PBR
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Plant Species Plant Part c\?\;:ieg T\tt I&ﬂ;y c\(;\;:?g':ti(nci;y C(\)I:I‘.:?:I:ti?l (Is))r Y Method Reference
P. bellardii Air-dried 0.54% n.d n.d HPLC [62]
P. coronopus Air-dried 0.29% n.d nd HPLC [62]
P. holosteum Air-dried 5.44% n.d n.d HPLC [62]
P. lanceolata Air-dried 7.50% n.d nd HPLC [62]
P. reniformis Air-dried 1.03% n.d nd HPLC [62]
P. schwarzenbergiana Air-dried 2.08% n.d n.d HPLC [62]
P. atrata Air-dried 8.76% n.d nd HPTLC [62]
P. bellardii Air-dried 0.59% n.d nd HPTLC [62]
P. coronopus Air-dried 0.22% n.d n.d HPTLC [62]
P. holosteum Air-dried 5.63% n.d n.d HPTLC [62]
P. lanceolata Air-dried 7.13% nd nd HPTLC [62]
P. reniformis Air-dried 0.84% n.d n.d HPTLC [62]
P. schwarzenbergiana Air-dried 1.76% n.d n.d HPTLC [62]
P. atrata Air-dried 9.33% n.d n.d LC-ESI- MS [62]
P. bellardii Air-dried 0.68% nd n.d LC-ESI- MS [62]
P. coronopus Air-dried 0.30% n.d n.d LC-ESI- MS [62]
P. holosteum Air-dried 5.33% nd n.d LC-ESI- MS [62]
P. lanceolata Air-dried 8.00% nd n.d LC-ESI- MS [62]
P. reniformis Air-dried 1.05% nd n.d LC-ESI- MS [62]
P. schwarzenbergiana Air-dried 2.68% nd n.d LC-ESI- MS [62]
P. lanceolata Leaf nd nd 1.28%-7.35% HPLC [51]
p. major Leaf 0.44% to 1.72%, n.d n.d RP-HPLC [63]
P. lanceolata Leaf 1.36%-1.72% 0.79%-1.37% n.d HPLC [64]
P. lanceolata Leaf 0.60 mg/mL 0.47 mg/mL n.d CE-MEKC [65]
P. asiatica Leaf 1.40 mg/mL nd n.d CE-MEKC [65]
P. major Leaf n.d n.d n.d CE-MEKC [65]
P. lanceolata Callus nd nd n.d CE-MEKC [65]
P. lanceolata Foliar n.d n.d 19.2 mg/g HPLC [66]
P. lanceolata Root nd nd 15.8 mg/g HPLC [66]
P. lanceolata Herbage 0.4-6.9 mg/g 0.01-0.09 mg/g n.d HPLC [52]
P. lanceolata L. cv. ‘Tonic’ Herbage 0.35-6.9 mg/g 0.01-0.09 mg/g n.d HPLC [52]
P. lanceolata Seed 0.02-0.23 mg/g n.d n.d HPLC [67]
PBR o
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Content in Dry

Content in Dry Content in Dry

Plant Species Plant Part Weight (AU) Weight (CA) Weight (IG) Method Reference
P. lanceolata Leaf 2.34% 1.21% n.d LC-MS [68]
P. lanceolata Leaf 10.6 mg/g 1.7 mg/g nd HPLC [69]
P. lanceolata Leaf 0.24% nd n.d TLC [70]
P. lanceolata Herbage 0.56-5.85 mg/g 0.003-0.39 mg/g n.d HPLC [69]
P. altissima Leaf 24.81mg/g 37.14 mg/g n.d HPLC [71]
P. argentea Leaf 39.92 mg/g 7.68 mg/g n.d HPLC [71]
P. holosteum Leaf 20.70 mg/g nd n.d HPLC [71]
P. lanceolata Leaf 14.36 mg/g 13.45 mg/g n.d HPLC [71]
P. major Leaf 8.99 mg/g nd n.d HPLC [71]
P. media Leaf 44.27 mg/g nd n.d HPLC [71]

PBR

Mean herbage aucubin and catalpol concentration of plantain harvested in different years, different growing seasons (spring,
summer, or autumn), or after establishment at different inputs harvested and various parts of the plant.

Abbreviations: n.d: not determined; AU: aucubin; CA: catalpol; IG: iridoid glycoside; GC: gas chromatography; GC-FID: gas
chromatography-flame ionization detector; GC-MS: gas chromatography-mass spectrometer; MEKC: micellar electrokinetic
chromatography; HPLC: high-performance liquid chromatography; LC: liquid chromatography; CE-MEKC: capillary electro-
phoresis- micellar electrokinetic chromatography; LC-ESI- MS: liquid chromatography-electrospray ionization tandem mass
spectrometric; RP-HPLC: reverse-phase- high-performance liquid chromatography; TLC: thin-layer chromatography

for catalpol, was low (1%—7%) compared to Bowers et
al., Stamp and Bowers, and Marak et al. studies [43, 46,
49, 50]. Remarkably, in the two works in which labora-
tory-reared plants were applied, catalpol contents were
exceptionally low (0%-0.6%) [37, 38]. Consequently,
Iridoid glycosides contents were lower in the greenhouse-
grown plants (0.83+0.09 to 6.41+1.02 mg/g) than in field-
grown plants (0.83£0.09% to 6.4141.02%) [51]. The au-
cubin content in plants harvested from the field was more
than 1.6%-2.7% in Bowers, 0.5%-5% in Darrow and
Bowers, and 0.6%2.2% in Nieminen et al. [3, 33, 42].
Catalpol concentrations were comparable in these stud-
ies 0.4%—3.6% in Bowers [3], 0.2%—2.2% in Darrow and
Bowers [33], and 0.7%—2.0% in Nieminen et al. [42].

Generally, the aucubin amounts of leaves increased
throughout the growing season, ranging from 0.5% to
4%-5% dry matter from July to September and October,
respectively. Likewise, the catalpol content of leaves
was calculated to be lower in July and increase through-
out the season until October. However, it revealed that
the catalpol content in the leaves was about half that of
aucubin, ranging from about 0.25% dry matter to about
2.5% dry matter. In the reproductive stalks, the aucubin
and catalpol levels tended to increase gradually during
the early part of the season and decrease sharply between

Rahamouz-Haghighi S. Cytotoxic Effect and Detection Methods of Aucubin and Catalpol in Plantago spp. PBR. 2023; 9(2):85-114

September and October. The total iridoid glycoside con-
tent in the reproductive stalks was slightly lower than
in the leaves: 1%-5% and 1%-7%, respectively. While
the leaves had higher levels of aucubin than catalpol, the
reproductive tissues had more contents of catalpol than
aucubin [33].

In another investigation, two cultivars of P. lanceola-
ta L., i.e., Ceres Tonic and Grasslands Lancelot, were
seeded in spring. The difference in aucubin and catalpol
levels in the leaves during the growing season and by
drying post-harvesting were quantitatively evaluated us-
ing high-performance liquid chromatography (HPLC).
The content of catalpol was relatively low (between 1%
and 2% of dry matter) throughout the growing season,
and there was no obvious seasonal change. From spring
to midfall, the aucubin content gradually increased from
1.0% to 2.7% in Ceres Tonic and from 2.1% to 4.8% in
Grasslands Lancelot [34].

Navarrete et al. reported the level of catalpol and au-
cubin in plantain (cv. Ceres Tonic) during two succes-
sive growing seasons (20112012 and 2012-2013) [52].
There was almost no concentration of catalpol in plantain
(cv. Ceres Tonic), but aucubin concentrations increased
during the growing season. The content of aucubin in-
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creased from 1.78 to 3.80 mg/g dry matter in the first and
from 0.44 to 6.87 mg/g dry matter in the second growing
season. In late fall, aucubin amounts steadily decreased
in Grasslands Lancelot and Ceres Tonic. In this regard,
the content of aucubin and catalpol in different parts of
Plantago species has been assessed by researchers with
various methods (Table 1).

Aucubin and Catalpol Preparation for Analysis

Aucubin is soluble in water. However, it spontaneously
undergoes oxidation and forms insoluble components in
aqueous solutions. It is also soluble in methanol and etha-
nol but is insoluble in organic solvents, such as benzene,
chloroform, ether, and petroleum ether [72]. Iridoid gly-
cosides usually tend to be hydrolyzed and undergo rear-
rangement under slightly acidic conditions [73]. There-
fore, they must be treated and analyzed under strictly
alkaline conditions. However, some structures are more
unstable and may hydrolyze even under alkaline condi-
tions or upon heating [74]. As aucubin is extracted from
plants, it is suggested that aucubin be prepared at a low
temperature in a weak acidic condition and dark status to
increase its output and stability [75]. In Nieminen et al.
study, hot water extraction was applied to separate the
compounds, which was reproducible and easy. As well,
it avoided the application of organic solvents, which bur-
den the environment [42].

As a result, the dry methanolic extract was dissolved
in water and partitioned with ETAC (ethyl acetate); for
aucubin, only the aqueous layer gave a positive result in
the Trim-Hill test [70]. The test (blue color) indicates the
presence of iridoid glycosides.

Various methods for the extraction of aucubin have
been developed according to its different chemical and
physical properties, including cold maceration and reflux
extraction. Special enzymes and ultrasound techniques
to destroy the plant cell wall have been recommended
to increase the permeability of active substances through
the cell wall. Extraction by ultrasonic and enzymolysis
help isolate aucubin. Also, the microwave extraction
method has been used to extract aucubin from Eucom-
mia ulmoides. Li et al. investigated the efficiency of the
supercritical CO, and Soxhlet extraction methods for
aucubin from Eucommia ulmoides Oliv seeds. The find-
ings showed that supercritical CO, extraction provides a
higher yield and lower extraction cost [75].
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Analytical Methods and Techniques for De-
termination of Aucubin and Catalpol

Bioactive components are determined by expensive
analytical methods that require chemicals, time, high
competence, and know-how [76].

Commonly, iridoid glycosides (IG) are detected with
chromatographic techniques, i.e., gas chromatography
(GC), liquid chromatography (LC), or thin-layer chro-
matography (TLC) [42]. The IG contents (aucubin and
catalpol) were analyzed by GC using previously de-
scribed methods [26, 31, 37, 40, 77-79]. Some of the
studies performed by GC analysis are listed in Table 2.

Flash chromatography was applied to separate catalpol
from aucubin [83]. However, the TLC method was the
first option for isolating aucubin and catalpol from the
plant extracts [84-86]. Taskova et al. [87] used TLC to
investigate iridoids from 44 Bulgarian collections select-
ed from 14 species of Plantago, of which 14 compounds
were determined using spectral methods [47]. The aque-
ous fraction was found to be rich in iridoids by the TLC
technique [88]. In this regard, several studies applied
analytical methods of high-performance thin-layer chro-
matography (HPTLC) and TLC for detecting aucubin
and catalpol, summarized in Table 3.

Derivatization with other compounds is necessary for
the visualization of the spot. So, reagents were used for
post-derivatization of aucubin and catalpol, such as 10%
alcoholic H,SO,, which burns the glucose molecule in
the aucubin giving colored spots, and 10% anisaldehyde
which gives a colored spot for aucubin. These reagents
are applied by dipping TLC plates in the reagent solu-
tions or by spraying the solutions on the TLC plates [70].
An ethanolic acidic solution of vanillin (1 mL H,SO,
conc., 3 g vanillin, 100 mL EtOH) is used to visualize
iridoid glycosides as colored spots.

Ronsted et al. identified the isolated compounds by
nuclear magnetic resonance spectroscopy [15, 22]. Their
findings showed that the distribution pattern of the iri-
doids in 34 species of Plantago has a good correlation
with the classification of Rahn [89]. The qualitative
studies of Plantago atrata, Plantago bellardii, Plan-
tago coronopus, Plantago holosteum, and Plantago re-
niformis have been reported [15, 87]. In some studies,
aucubin and catalpol have been isolated from the genus
Plantago (Table 4).
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Table 3. Analytical methods by high-performance thin-layer chromatography (HPTLC) and thin-layer chromatography (TLC)

Detection (nm) /

Method Extraction / Species Plate Type Mobile Phase Rf IG Reference
Reagent
MeOH- washed aque- . . o
e ous and CHCL. / P. lan- RP18, F254s, Acetonitrile: MeOH:H,0 nd/ E.thanollc a.u.dlc nd AU (54]
3 (6:2:17) solution of vanillin CA
ceolata. P. major, leaf)
MeOH-different fraction  Neutral alumina BuOH:MeOH:H O AU
_ . X .
TLC- densitometry T . 60F254 Type (70:5:10) 450/ Sulfuryl chloride n.d A [87]
MeOH-partitioning  Silica gel GF 254 n_t’éi‘é%ﬂzcgr\:\é (2;3H_ n.d / 10% Alcoholic 055
Preparative TLC the aqueous layer with (20 * 20 cm, 0.5 ’ . ’ H_SO, and 10% Anisal- 0.36 AU [70]
ETAC/ P. lanceolata leaf mm) DW 4:1:5 e dehyde 0.78
: ISOPrOH: DW 6:4 Y :
Silica gel 60 (20 ETAC: H.O: formic .
0, - 2 -
HPTLC 50”’,5:2% _Zr:‘;gceo *10cm, 0.25 acid-acetic acid >20 S/u?:u';i'g‘z:jyde nd AU [62)
mm) (90:20:15:15)
MeOH - partitioning 60 GF254 CHCI3:MeOH:0.25M o .
HPTLC the aqueous layer with (10*10 cm, 0.2 trifluoroacetic acid in nd/ 1(})_{/05/3Icohol|c nd AU [70]
ETAC/ P. lanceolata leaf mm) ammonia (7:4:1) 774
CHCI, (35 mL):MeOH
50% EtOH / Five variet- " (20mL):5 mL of Ammo- o/ 00¢ Sutfuric acid AU
HPTLC . Silica plate nia (1 mL of trifluoro- . n.d [76]
ies of P. lanceolata leaf S in Methanol CA
acetic acid in 50 mL of
ammonia at 25%)
PBR

Note: MeOH: methanol; CHCl,;: chloroform; ETAC: ethyl acetate; EtOH: ethanol; BuOH, butanol
Abbreviations: n.d: not determined; AU: aucubin; CA: catalpol; IG: iridoid glycoside; HPLC: high-performance liquid chroma-

tography; TLC: thin-layer chromatography

To quality control herbal samples containing iridoids,
it is possible to quantify the levels of various iridoids in
a mixed status by a simple method using liquid chroma-
tography equipped with an ultraviolet detector (LC-UV)
[60]. Usually, relatively large amounts of weak acids,
such as phosphoric acid and acetic acid, are added to the
mobile phase to prevent interference and stabilization of
tautomeric rearrangements. In this way, a good separa-
tion of different iridoids can be achieved [114]. Kim et al.
developed a simple LC-UV procedure to overcome such
unfavorable interference by adding a small amount of
trifluoroacetic acid (TFA) to the mobile phase with aque-
ous acetonitrile. They could simultaneously determine a
small mixture of catalpol and aucubin in the aqueous
extract of leaves, seeds, and roasted seeds of P. asiati-
ca [60]. Aucubin and catalpol in the P. lanceolata ex-
tract were evaluated using liquid chromatography-mass
spectrometry (LC-MS) [68, 70]. HPLC and HPTLC are
frequently used to identify bioactive in samples in vari-
ety selection programs or to control new varieties [59,
115]. However, several methods can be applied to detect
aucubin levels in Plantago extracts; the most common
ones are HPLC [34, 116] and HPTLC [117, 118] meth-
ods. According to this, an attempt was also made for the
quantitative analysis of aucubin in 7 Plantago species
using HPLC and HPTLC by Jankovi¢ et al. [62]. Other
researchers also determined these compounds in Plan-
tago species (Table 5).

One of the conditions of HPLC is the absorption spec-
trum. The absorption spectra of aucubin (220, 255, 290 nm)
are used for detecting aucubin extracted from plants [124].

Capillary electrophoresis (CE) is a valuable tool for
medicinal plant quality handling, screening, and analy-
sis [65]. All main bioactive secondary metabolite groups
can be assayed by one of the CE techniques; MEKC
(capillary zone electrophoresis [CZE], Micellar electro-
kinetic chromatography [MEKC], microemulsion elec-
trokinetic chromatography [MEEKC], and nonaqueous
CE [NACE]) [125]. The analysis of iridoids by the CE
method has already been published [2, 126, 127]. CE
methods detect metabolites such as iridoid glycosides in
Plantago species [2].

The CE and micellar electrokinetic capillary chroma-
tography (MECC) methods were also used for evaluat-
ing neutral compounds like aucubin and catalpol [47,
128]. CE method has been confirmed to be suitable for
the quantitative determination of aucubin and catalpol
from aqueous extracts of leaf parts of P. lanceolata, P
major, P. asiatica, and P. lanceolata callus [65]. The
content of aucubin and catalpol in P, lanceolata was reli-
ably and quickly determined by MECC [42].

Rahamouz-Haghighi S. Cytotoxic Effect and Detection Methods of Aucubin and Catalpol in Plantago spp. PBR. 2023; 9(2):85-114
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Table 4. The list of determination of isolated aucubin (AU) and catalpol (CA) in the genus Plantago

Plantago Species Origin Compound References Figure
Plantago afra . AU
(P. psyllium) Mediterranean AU and CA [15, 67, 85, 87]
P. amplexicaulis Mediterranean AU and CA [85]
P. arborescens Macaronesia AU [15, 85]
P atrata Europe to W. Asia WL Eepaie d ihydro [15, 62, 90]
aucubin
P. australis Warm Americas AU [15]
P. bellardii The Mediterranean AU [15, 62, 85]
. AU
P. coronopus The Mediterranean, Europe nd [62, 85, 87]
P. cretica The Mediterranean AU [15]
P. lundborgii San Ambrosio Is1 AU and CA [15] Not found
P. maritima Cosmopolite AU [15, 85]

Rahamouz-Haghighi S. Cytotoxic Effect and Detection Methods of Aucubin and Catalpol in Plantago spp. PBR. 2023; 9(2):85-114
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Plantago Species Origin Compound References Figure
P. nivalis Spain CA [15]
P. ovata Spain AU and CA [15, 67, 91]
P. patagonica Western USA AU and CA [15, 53]
P. raoulii New Zealand AU [15]
P. reniformis Southeast Europe AU [15, 62]
P. sempervirens (P. ynops) Southwest Europe AU [85]

Amsterdam and St. Paul

P. stauntonii AU [15] Not Found
Islands
P. subspathulata Madeira n.d [15]
P. subulata (carinata) The Mediterranean AU [15, 85, 92]

P. uniflora (Littorella

) Europe AU and CA [15, 93]

Rahamouz-Haghighi S. Cytotoxic Effect and Detection Methods of Aucubin and Catalpol in Plantago spp. PBR. 2023; 9(2):85-114
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Plantago Species Origin Compound References Figure

P. webbii Macaronesia AU [15, 85]
P. alpina Europe AU [85]

P. altissima Europe AU and CA [71, 85, 87, 90, 94]

. . n.d

P. arenaria The Mediterranean AU [67]

P. argentea Southern Europe AU and CA [71, 85, 87, 90]
P. asiatica South and East Asia o [60, 95, 96]
’ AU and CA T

P. cornuti Southern Europe AU 1’3 A [85, 87,97]

P. hookeriana Southern USA AU and CA [98]
P. lagopus The Mediterranean AU fmjd cA [85, 87, 99]

]
“ Rahamouz-Haghighi S. Cytotoxic Effect and Detection Methods of Aucubin and Catalpol in Plantago spp. PBR. 2023; 9(2):85-114
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Plantago Species Origin Compound References Figure
[19, 33, 34, 44,51, 52, 54,
P. lanceolata Europe AU and CA 58,59, 64, 66, 67, 69, 85,
87,90, 100-107]
P maior Europe AU [54, 63, 67, 85, 87, 99, 100,
-majf P AU and CA 102, 108, 109]
P. scabra South Africa AU [87]
P. tenuiflora Europe AU [87]
P. gentianoides Southeast Europe, Iran., etc. AU [87]
P. media Europe AU [71, 87, 110, 111]
P. myosuros South America AU [112]
P. rhodosperma Southern USA AU [113]
P. holosteum South-eastern Europe AU [62, 71]
P. schwarzenbergiana n.d AU [62] Not found

Abbreviations: n.d: not determined; AU: aucubin; CA: catalpol
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Micellar electrokinetic chromatography (MEKC) was
used to isolate and analyze aucubin and catalpol in hot
water extraction of several Plantago species growing in
Croatia: P, altissima L., P. argentea Chaix, P. coronopus
L., P. holosteum Scop. (subsp. depauperata, subsp. holo-
steum and subsp. scopulorum), P. lagopus L., P. lanceo-
lata L., and P. maritima L. Significant differences were
exhibited between the iridoid contents in mentioned spe-
cies using this method [47].

An authentic and simple CE-MEKC method has been
validated and developed to quantitatively determine
aucubin and catalpol of Plantago species, P. lanceo-
lata calli, P. lanceolata matrices, P. altissima, P. major,
P. media, and P. maritima [61]. However, TLC pattern
analysis could recognize the species mentioned above
in a single run in a system commonly applied for the
quality management of P. lanceolata leaves. However,
P, altissima and P, lanceolata did not represent enough
pattern difference to be fully isolated [61]. Consequently,
according to iridoid content, P. altissima was chemically
indistinguishable from P, lanceolata [61].

Also, Gonda et al. evaluated the changes in aucubin
and catalpol concentration in dry leaves of P. lanceolata
subjected to the atmosphere with different relative hu-
midity (0%, 45%, and 75%) by CE-MEKC for 24 weeks
[115]. CE-MEKC method showed that it is suitable for
aqueous extracts of P. lanceolata, P. major, P. asiatica
leaves, and P. lanceolata callus culture [65].

In another study, aucubin from P. lanceolata was sepa-
rated and quantified by preparative TLC and then de-
termined by HPTLC fingerprinting. Aucubin that was
isolated from the plant material was analyzed by Fouri-
er-transform infrared spectroscopy (FTIR) and LC-MS,
respectively [70]. Each TLC-isolated compound exhib-
ited a single spot on the HPTLC plate, which confirms
an idea about the purity of the isolated compound. Aucu-
bin accompanied by catalpol were determined using LC-
MS in different ionization mode. In continuing, many
functional groups were recognized in the TLC-isolated
aucubin by FTIR [70]. Nevertheless, aucubin and ca-
talpol in Plantago can be quantified by other different
methods such as LC-ESI-MS (liquid chromatography-
electrospray ionization tandem-mass spectrometry) [62],
MPLC [88], LC-TOF-MS (liquid chromatography-time
of flight-mass spectrometry) [80], and uHPLC-TOF-
MS (ultra-high performance liquid chromatography
combined with time-of-flight mass spectrometry) [35].
Various selection programs require rapid and low-cost
methods to analyze bioactive components in thousands
of samples. FTNIR (Fourier transform near-infrared
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spectroscopy) supported using chemometric analysis
could be a tool to reduce time and costs. A suitable meth-
od has been developed to quantify bioactive compounds
in plant species [129, 130].

Understanding the mechanism of measuring tools can
help us choose the correct and accurate method for mea-
suring compounds (Table 6).

Techniques for determining aucubin and catalpol
in pharmacokinetic studies

Although this study has been performed on the meth-
ods of determining aucubin and catalpol in Plantago
species, mentioning some methods for detecting these
compounds in pharmacokinetics can also be useful.

A fast and accurate LC-electro spray ionization (ESI)-
MS/MS method has been developed and validated to
quantify catalpol in rat plasma [133]. Another group of
researchers also validated LC-MS/MS method. How-
ever, APCI (atmospheric pressure chemical ionization)
was replaced by ESI for the determination of catalpol
(m/z of 380/165) in rat plasma and cerebrospinal fluid
(CSF) [134]. Therefore, LC-MS/MS was validated as a
rapid, sensitive, accurate, and robust method and applied
for quantifying aucubin, a main bioactive component of
P. asiatica, in rat plasma [135, 136]. On the other hand,
Xue et al. introduced the LC-ESI-MS/MS method for
simultaneously determining aucubin and catalpol in rat
plasma [137]. Zhang et al. created a specific and sensi-
tive high-performance liquid chromatography coupled
with a tandem mass spectrometric (HPLC-MS/MS)
method. The method was developed to simultaneously
determine geniposidic acid and aucubin in rat plasma af-
ter oral administration of Du-Zhong tea extract [138]. In
this regard, the simultaneous determination of catalpol,
morroniside, loganin, and acteoside in the plasma of nor-
mal and chronic kidney disease rats by ultra-performance
liquid chromatography coupled with mass spectrometry
(UPLC-MS) was developed to investigate the combined
medicinal extract of R. glutinosa and Cornus officina-
lis Sieb [139]. Hu et al. presented a selective, sensitive,
and efficient ultra-performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS) method for
simultaneously determining 5 active substances, includ-
ing aucubin in male and female rat plasma after oral ad-
ministration with Eucommiae cortex extract [140]. Lian
et al. developed a novel method for aucubin determina-
tion in rat serum with type 1 diabetes using UPLC-MS/
MS with supramolecular solvent (SUPRAS)-based on
dispersive liquid-liquid microextraction. In general, re-
garding instrumental analysis, UPLC-MS combines the
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Table 6. Specifications of analysis methods of iridoid glycosides (aucubin and catalpol)

Method Problems Advantages References
Poor resolution, aucubin, and catalpol—relatgd First choice for the selection of aucubin and
TLC compounds were poorly separated, and this catalool [47, 84]
could lead to erroneous spot assignment P
Impurities in and additives to solvents can Often applied to detect bioactive samples in the
HPTLC cause irreproducible separations, enhanced UV-  framework of variety selection plans or to control [76, 131]
background, additional noise new varieties
Adding large amounts of 1% weak acids (v/v),
change of the detection wavelength to 230-240
nm, a high boiling point of acetic acid (108°C), Adding a small amount of trifluoroacetic acid
LC-Uv and non-volatile properties of phosphoric acid (TFA) to the mobile phase (aqueous acetonitrile) [60, 114, 126]
can lead to additional disturbances in the separa- has great practical effectiveness.
tion of iridoids and maintaining the columns due
to the retained metallic acid
Long run fime. failure to resolve iridoids as a To characterize bioactive compounds in samples
HPLC e ! in the framework of variety selection schedules [59, 65, 115]
separate peak cluster L
or to control new varieties
CE and MECC-CE Poor separation between aucubin and catalpol High speed and resolution [47,128]
Aucubin and catalpol have very h.|gh pia Yalues All main bioactive secondary metabolite groups
CZE (> 12); these molecules are non-ionogenic and can be evaluated by one of the CE techniques [47]
not be isolated by CZE Y q
Quick analysis, satisfactory resolution between
MEKC Separating highly hydrophobic analytes, which is iridoids and their good isolation, specificity, 47, 65, 132]
difficult with MEKC resolution, acceptable accuracy, and precision. a T
worthwhile tool in fingerprint analysis
FT-NIR Not mentioned A rapid and low-cost method [129, 130]
PBR

Abbreviations: TLC: Thin-layer chromatography; LC-UV: liquid chromatography-UV; HPLC: high-performance liquid chro-
matography; HPTLC: high-performance thin-layer chromatography; CE: capillary electrophoresis; MECC, micellar electroki-
netic capillary chromatography; CZE: capillary zone electrophoresis; MEKC: Micellar electrokinetic chromatography; FTNIR:

Fourier-transform near-infrared spectroscopy

resolution capability of chromatography with the ben-
efits of speed, specificity, and sensitivity acquired by
mass spectrometry (MS). The analytical community has
widely admitted this hyphenated technique as a common
tool in pharmacokinetic studies [141]. The UHPLC-MS/
MS method for aucubin determination exhibited low
limits of quantification, good linearity, high extraction
recoveries, acceptable accuracy, precision, and stability,
in plasma and tissue samples of mice [142].

Biological Activities of Iridoid Glycosides

Iridoids, including secoiridoids, glucosides, esters, and
aglycones derivatives, have been reported for medici-
nal applications [143]. Iridoids are classified as dietary
supplements, medicinal foods, and drugs. Iridoids or iri-
doid-rich plants have established the following biologi-
cal activities in vitro, in vivo, and clinical research [143].
Iridoids act as a defense for specified plant species and
cause various medicinal effects in animals [ 144]. A large
number of iridoids isolated from plants used in tradi-
tional medicine have shown various biological activities,
thus validating their popular use all over the world. A

PBR

broad range of biological activities has been reported for
iridoids which include anti-diabetic, anti-cancer, anti-in-
flammatory, anti-microbial, anti-bacterial, anti-oxidant,
anti-spasmodic, hepatoprotective, hypolipidemic, hypo-
glycemic, cardioprotective, choleretic, neuroprotective,
purgative, molluscicidal, immunomodulatory, stimula-
tion of bile acid excretion, hepatic dysfunction, anti-tu-
mor, antidotal activities for noxious Amanita mushroom
poisoning and anti-viral effects against hepatitis B virus
[18, 145-153]. Besides, some iridoids have exhibited an-
ti-protozoal effects against Plasmodium spp. [154, 155],
Trypanosoma spp. [156], and Leishmania spp. Indeed,
the anti-leishmania activity of iridoids has drawn the
scientific community’s attention for decades [157, 158].

Pharmaceutical properties of aucubin and catalpol

Most iridoids, including aucubin and catalpol, have
been reported to exhibit significant medicinal properties,
such as anti-inflammatory [159], anti-cancer and anti-
bacterial activities in vitro and in vivo assay systems.
The allure of aucubin and catalpol as cosmetic ingredi-
ents in hydrogel formulations was obvious, especially

Rahamouz-Haghighi S. Cytotoxic Effect and Detection Methods of Aucubin and Catalpol in Plantago spp. PBR. 2023; 9(2):85-114
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Table 7. Anti-bacterial activities of iridoids glycoside (aucubin and catalpol)

Compound

Type of Organism/Mechanism

Result

Reference

Aucubin, Aucubigenin

Aucubin, Aucubigenin

Aucubin

Aucubin, Catalpol

Staphylococcus aureus

Staphylococcus aureus (ATCC 25923), Escherichia
coli (ATCC 25922), Salmonella enterica (ATCC
14028), Pseudomonas aeruginosa (ATCC 27853)
/ Disk diffusion method; MIC and MBC values by
Micro-Well dilution assay method

Candida albicans / MIC, MFC, MBIC; Biofilm by
a 2,3-bis (2- methoxy-4-nitro-5-sulfophenyl)-2H-
tetrazolium-carboxanilide reduction assay; cell
surface hydrophobicity; hydrophobicity percent-
age of the cell surface

Enterococcus faecalis (ATCC 29212), Escherichia
coli (ATCC 25922), Staphylococcus aureus (ATCC
29213), Pseudomonas aeruginosa (ATCC 27853),
Candida krusei (ATCC 6258), Candida albicans
(ATCC 90028), Candida parapsilosis (ATCC 90018)

Aucubigenin, the enzymatic hydrolysis product
of aucubin, was an active matter for the antimi-
crobial activity

Aucubin was not active no against all of the
tested bacteria; aucubigenin exhibited consider-
able antibacterial activity; MIC (0.03-2 mg/mL),

MBC (0.06-2 mg/mL)

MICs of aucubin (61 to 244 pg/mL); MFC of
aucubin (244 pg/mL), MBIC of aucubin (61 to 244
ug/mL); a potent fungicidal activity

MICs of aucubin and catalpol (256 to 512 pug/mL)
on bacteria and (128 to 256) on fungi.

[163]

[164]

[165]

[166]

/ Broth microdilutions

PBR

Abbreviations: MIC: minimum inhibitory concentration; MBC: minimum bactericidal concentration; MFC: minimum fungi-
cidal concentration; MBIC: minimum biofilm inhibitory concentration.

when iridoid glycosides were used as lipid nanoparticles
[10]. However, several properties have been reported for
the compounds aucubin and catalpol, and understanding
the mechanism of action of many of these properties re-
quires more extensive studies.

The study on aucubin confirmed that it possesses ex-
tensive pharmacological effects, including anti-aging,
anti-bacterial (Table 7), anti-cancer, anti-fibrotic, anti-
oxidant, anti-toxic, neurotrophic,
neuroprotective, hepatoprotective, osteoprotective, anti-
inflammatory properties as like suppressing the inflam-
matory act produced by the injection of carrageenan, and
healing of skin wounds as like local treatment of oral
wounds [152, 160-162].

anti-osteoporosis,

Aucubin established a significant protective effect
against ramanitin intoxication in mice [167]. Aucubin
also stimulates the elimination of uric acid from tissues
to the blood and the repulsion of uric acid from the kid-
neys [168]. Aucubin acts as a particular inhibitor of NF-
kB (nuclear factor NF-kappa B) in mast cells, which may
effectively remedy chronic allergic conditions [169].

Aucubin, and to a greater extent catalpol, are deterrents
or toxic to generalists [3, 170]. These compounds apply
as oviposition and feeding stimulants for some specialist
herbivores [43, 58, 171, 172].

Catalpol has been assessed widely for its biological
properties in vitro and in vivo [18]. Although catalpol

Rahamouz-Haghighi S. Cytotoxic Effect and Detection Methods of Aucubin and Catalpol in Plantago spp. PBR. 2023; 9(2):85-114

is more toxic to generalist herbivores than aucubin [3,
43, 170, 173], the research on its properties has shown
various pharmacological effects, including sedative,
anti-inflammatory, analgesic, anti-tumor, liver protec-
tive, anti-microbial (Table 7), purgative, anti-apoptosis
actions, and anti-catarrhal for the upper and lower re-
spiratory tract [174-176]. In addition to the listed activi-
ties, catalpol has been confirmed as a significant neu-
roprotective agent against experimental Alzheimer and
Parkinson diseases. Catalpol has shown a potential glu-
cose-lowering activity in experimental type 1 and type
2 diabetes mellitus. These activities may be due to im-
proved glucose use in insulin-sensitive tissues and cured
mitochondrial biogenesis/function. In addition, catalpol
has shown potentially beneficial results in experimental
diabetic complications. The significant protective ef-
fect of catalpol on cardiovascular was also confirmed.
However, in experimental models, catalpol was effective
against asthma, hepatotoxicity, and ovarian failure [18].

Anti-cancer properties of aucubin and catalpol

The researchers reported that aucubin inhibited the
proliferation of A549 human non-small lung cancer
cells by upregulating the expression of p21 and p53
proteins to prevent cell cycle progression in the GO/G1
phase. However, hydrolyzed aucubin showed better anti-
leukemia activity than aucubin [177]. Catalpol signifi-
cantly affected various cancer models, including lung,
breast, stomach, and colorectal cancers. One placebo-
controlled clinical study confirmed the effect of catalpol
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Table 8. Anti-cancer activities of iridoids glycoside (aucubin and catalpol)

Compound Type of Organism/Mechanism Result References
Aucubin Chronic myelogenous leukemia K562 cells; nor- Inhibits cell proliferation, a weak antileukemic (178]
mal lymphocytes /XTT-based Colorimetric Assay activity
Human solid tumor cell lines SW1573 (non-small Formation of analogs with one to three silyl
cell lung), HBL-100 (breast), T47D (breast), WiDr ether groups - formation of antiproliferative
Catalpol (colon), A2780 (ovarian), Hela (cervix) / in vitro compounds against a panel of six human solid [179]
antiproliferative activity; in silico calculation; cell  tumor cell lines — the arrest in G0/G1 phase and
cycle studies inhibition of DNA polymerase
. Human non-small cell lung cancer (A549) / XTT Blocking cell cycle progression at the GO/G1
Aucubin . R X [177]
assay; ELISA; Immunoblot assay phase and inducing apoptosis
Human solid tumor cell lines (Hela, HBL-100, s .
A2780, SW1573, WiDr and T47D) / Chemosensi- _CroWth inhibition, cell cycle arrest n the G1
Catalpol .. ; . -~ phase, reduction in cyclin D1 expression. induc- [180]
tivity tests; Flow cytometric; Annexin V binding; ing aDoDtOsis
Immunoblotting, € apop
Breast cancer cells (T47D and MDA-MB-231) / Antiproliferation effects by specific concentra-
Catalpol Phytoestrogenic effects, expressions of ER4/ER3 tions of catalpol and increase the level of ERa [181]
protein and ps2 mRNA protein expression in T47D cells by catalpol
OVCAR-3 cells / MTT; Caspase-3 Activity Assays; Suppressing cellular proliferation, accelerating
Catalpol Flow Cytometry; Gelatin Zymography Assays of apoptosis in OVCAR-3 ovarian cancer cells, [182]
P MMP-2; Q-PCR Analysis of miR-200 Expression; promoting microRNA-200 expression levels, and
Transfection of anti-miR-200and miR-200 restraining MMP-2 signaling
. . . . Catalpol and aucubin were not cytotoxic,
Aucubin, catalpol, hydro- Human myeloid .Ieukemla ceII. lines (K562) / MTT; down-regulated BCR-ABL phosphorylation, and
R Cell cycle analysis (P1); Annexin V assay; Western L - L
lyzed-aucubin, hydrolyzed- ; . inhibited constitutive STAT3 activation by H- [183]
blotting; Immunocytochemistry for STAT3 and . A )
catalpol o catalpol and H-aucubin, enhancing the apoptosis
STATS localization . .
induction by hydrolyzed-catalpol
Antiproliferation of T24 cells, promoting apop-
tosis, arrest at G2/M phase, the modulation of
Catalpol Human bladder cancer cells T24 / MTT assay and PI3K/Akt pathway, inhibits the expression of (184]
P flow cytometry, Western Blot Analysis B cell ymphoma-2 (Bcl-2) family proteins; up-
regulated Bcl-2, Bcl-2-associated X protein, and
Bcl-2 associated death promoter
Human breast cancer (MCF-7) / MTT assay, ) R . .
caspase-3 activity assays, flow cytometry, gelatin Decreasing cell proliferation, promoting apop-
P Y VS, yiometry, 8 . tosis in MCF-7 cells, reducing MMP-16 activity,
Catalpol zymography assays, reverse transcription-quanti- . . . ; R [185]
. . . . and increasing the expression of miR-146a in
tative polymerase chain reaction, miR-146a, and
C MCF-7 cells
anti-miR-146a
CTZG. col9n cancer Rl e e S, Suppressing growth, proliferation, and invasion
matrigel invasion assay; Boyden chamber assay, L X
L of colon cancer cells, inhibiting inflammation
xenograft tumor transplant model; rat aortic ring . . o
Catalpol . . and tumor angiogenesis, reducing inflammatory [186]
assay, Capillary tube formation assay, enzyme- .
. ; X factors in colon cancer tumors (IL-1B, IL-6, IL-8,
linked immunosorbent assay, Immunohistochem- .
X COX-2, and iNOS)
ical assay, western blot analyses
Human colorectal cancer cells (HCT116) / MTT, Anhprollfgrahye effect, downregu'lat'lon of th?
s . PI3K-Akt signaling pathway; Inducing apoptosis
caspase3 and caspase9 activities, flow cytometric . .
Catalpol N L of HCT-116 cancer cells; increasing caspase-3 [187]
assays for annexin VFITC/PI, DAPI staining assay, L R
and Western blot analysis. RTaPCR and caspase-9 activities; and upregulation of
Vsis, R1d microRNA-200 expression
Suppressing migration of osteosarcoma; reduc-
ing KRAS expression; apoptosis; improving
Human osteosarcoma cancer cell lines (MG63 Clir‘l;::acsaes_%a;zi/e:i/{z a;;iﬁﬁ'gf:?;:'?::;)
and U20S), a non-tumor cell line of hFOB1.19 poly ! X 4 P
. and Bax up-regulation, down-regulated of
Y/ DA syl eyl €1l el s, @ mitochondrial Cyto-c and cellular Bcl-2, reactive
Catalpol healing assays, Migration analysis, Western blot 4 ’ [188]

analysis, RT-qPCR, ROS assessment, Xenograft
mice model, Immunohistochemistry (IHC)
analysis

oxygen species (ROS) production, ROS scavenger,
N-acetylcysteine, imped of catalpol-caused
apoptosis, suppression of signal transducer and
activator of transcription 3/Janus kinase 2 gene/
Src (STAT3/JAK2/Src), in vivo reduction of the
tumor growth
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Compound Type of Organism/Mechanism Result References
MKN-45 human gastric cancer cells, Athymic Decreasing m|gra‘t|on and proliferation of cancer
N . cells, suppression of MMP-2, a-SMA, RhoA,
nude mice / MTT, Western blot analysis, flow . .
. ROCK1, and N-cadherin; apoptosis in cancer cells
Catalpol cytometry analysis; Measurement of ROS gen- . . . [189]
. X . by elevation of apoptosis-associated markers,
eration, GSH/GSSG ratio, athymic nude model .
X X K | X cleaved caspase-3, and PARP, prevention of
experiment, immunohistochemical analysis . .
tumor growth in xenograft nude mice
Locally advanced colon adenocarcinoma
(patients with surgical resection) / serum
:::31?;2?2:?:;: Zzu(iil)l‘grfaifiﬁ rlnigl’ Reduction of serum levels of CA 19-9, CEA, MMP-
Catalpol X v e L . 2, MMP-9; non-fatal adverse effects; significantly [190]
loproteinases-2 (MMP-2), matrix metalloprotein- increasing of 0S and CFS, favorably cost
ases-9 (MMP-9); Patient overall survival (OS), J ! v
cancer-free survival (CFS), adverse effects, cost
of therapy
NSCLC human non—small-cell lung cancer cells- Inhibition of TGF-B1-induced cell migration and
A549 cells/cell viability assay, cell migration, invasion of A549 cells, Attenuated MMP-2, and
Catalpol and invasion assays, quantitative real-time poly- MMP-9 expression; Significant attenuation of [191]
merase chain reaction, Western blot analysis, Smad2/3 activation and NF-kB signaling path-
Zymography assay ways induced by TGF-B1 in A549 cells
Hepatocellular carcinoma (HCC) cell lines (Huh7 Suppressed cell viability, and colony growth,
and HCCLM3) / qRT-PCR, Western blot, MTT reduced the number of migrating/invading cells,
Catalool assay, colony formation assay, transwell invasion increased apoptosis with an increase in the (192]
P and migration assays, flow cytometry, a luciferase number of cells in the GO/G1 phase of the cell
reporter assay, in vivo nude mice model for HCC  cycle, up-regulation of miR-22-3p expression and
tumor growth assay down-regulation of MTA3
Reduction of miR-34a expression levels, over-
expressed SIRT1 in most of the CRC tissues and
CRC cells / CCK-8 assay, flow cytometry, electron all the CRC cell lines, reduction of cell viability,
Catalpol ! . . [193]
microscopy, western blotting suppressed autophagy, promoted apoptosis,
regulation of the expression of SIRT1- inducing
miR-34a in vitro and in vivo
Antiproliferative activity; invasion and migration;
s . decreasing vimentin and N-cadherin expression;
HCC cells / Reverse transcription-quantitative . . . R
R . . increasing E-cadherin and miR-140-5p expres-
Catalpol PCR, western blotting, protein expression levels L . . [194]
; . . ) . sion, inhibition of morphological changes in the
of miR-140-5p, vimentin, N-Cadherin, E-Cadherin . . .
epithelial-mesenchymal transformation of cells
induced by TGF-B1
PBR

on colorectal cancer, which seems to have an anti-cancer
impact due to the reduction of inflammation, apoptosis,
angiogenesis, and cell cycle arrest [18].

The researchers’ findings show that aucubin and catal-
pol are known as potential cancer treatments due to their
ability to prevent cancer progression and metastasis and
induce the death of cancer cells. Therefore, in the present
study, some of the properties of these compounds were
briefly described. However, anti-cancer properties have
been reported in detail (Table 8).

Conclusion

The iridoid patterns exhibited a significant correlation
with morphological and other chemical specifications of
the representatives of the genus Plantago. Aucubin has
extensively been detected in wild plants and especially in

Rahamouz-Haghighi S. Cytotoxic Effect and Detection Methods of Aucubin and Catalpol in Plantago spp. PBR. 2023; 9(2):85-114

P, asiatica. It was reported that aucubin has only been ex-
tracted from plants. However, pure products can barely be
obtained due to the unstable structure of aucubin. In some
studies on Plantago species, aucubin was also found to be
more frequently exist compared to catalpol, which could
be related to the fact that aucubin is a biosynthetic pre-
cursor of catalpol. However, the catalpol value was also
observed to be more compared to aucubin content in some
Plantago species (P. lanceolata, P. altissima, P. lagopus,
and P. argentea) where both iridoids were existence. As
a result, leaf age, plant genotype, seasonal changes, and
environmental factors affected these variables and influ-
enced the iridoid glycoside concentrations.

The iridoid glycosides, i.e., aucubin and catalpol, are
active components with wide pharmacological activities.
These compounds have anti-microbial, anti-oxidative,
anti-inflammatory, and anti-fungal properties. There-
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fore, aucubin and catalpol are compounds with abun-
dant sources, good safety, and various biological effects,
which demonstrate high value in pharmaceuticals and
deserve further research and development.

Aucubin and catalpol have been identified as bio-
logically active in the Plantago species. Furthermore,
aucubin and catalpol play many important roles in the
medicinal effects of Plantago species, including their
hepatoprotective, spasmolytic, collagen synthesis pro-
moting effects, pancreas-protective, neuroprotective,
anti-atherogenic, and anti-arthritic. These results suggest
Plantago species and their metabolites may apply to hu-
man health beyond their traditional uses.
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