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Introduction

As curve pertaining to morbidity and 

mortality of diabetes mellitus (DM) had 

positive slope in recent decades (1) and 

it is predicted to have 439 million 

diabetic patients in 2030 (2), more and 

more attention is paid to this issue. 

Additionally, myocardial dysfunctions 

such as diabetic cardiomyopathy 

(DCM) is more probable in DM patients 

compared to non-DMs (1). DCM is a 

pathological condition in which 

cardiomyocytes lose their potency to 

shift between different fuel substrate. 

Healthy heart uses long chain fatty acids 

(LCFA)   providing   60-70%   of   ATP  

requirement to power contraction (3-6), 

but cardiac substrate utilization is 

altered in the diabetic condition leading 

excessive use of FA oxidation up to 90–

100% of the heart's ATP needs (5). As a 

result of metabolic derangements, 

myocardial dysfunction may appear. 

Complicated network regulating energy 

utilization and storage in myocardium is 

correlated with peraxisome prolifrator-

activated receptors (PPARs) (7,8). They 

are ligand-activated transcription factors 

belonging to the nuclear hormone 

receptor superfamily, including three 

isoforms termed as PPARα,  PPARδ/β

 

  

 

Abstract 

Peraxisome prolifrator-activated receptors (PPARs) are a group of nuclear receptors 

comprising three isoforms termed alpha, beta/delta and gamma. PPARs can modulate 

metabolic processes especially fatty acid (FA) metabolisms via exerting transcriptional 
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role in controlling chronic diseases such as diabetes. As development of diabetes leads 
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cardiomyopathy (DCM), metabolic controller seems to be able to affect on 

cardiomyocytes. Herein, the role of PPARα, and PPARδ, is emerged and compared. 

This minireview discusses about these receptors in diabetes. 
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 (hereafter δ)  and PPARγ (9). PPARs 

are activated by their selected ligands 

and form heterodimerize with retinoid 

X receptors (RXRs), respectively (10). 

Then the heterodimer binds to 

peroxisome proliferator response 

elements (PPREs), specific sequences in 

their target genes, and causes 

transcriptional switch (Fig. 1). Control 

of FA consumption and storage is 

considered as a prior outcome of 

activated PPRE (11). Current review 

highlights and compares the role of 

PPARα and PPARδ in fatty acid 

oxidation (FAO) and DCM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pathophysiology of cardiomyopathy 

Heart is an organ with complicated 

cellular networks trying to maintain 

appropriate function. Despite all 

attempts, sometimes cardiomyocytes 

experience either revisable or 

unrevisable defaults leading to situation 

termed cardiomyopathy. 

Cardiomyopathy can occur as a result of 

mutation and extrinsic stimuli. Among 

900 possible mutations affecting 

cardiomyocytes 400 mutations are 

tolerated by 13 sarcomeric proteins 

including β-myosin heavy chain (β-

MyHC), α-cardiac actin, tropomyosin, 

and troponin (12). Mutation in troponin 

complex, an essential modulator of 

Ca
2+

-stimulated actomyosin interaction 

or ATPase activity in the striated 

muscle, showed Ca
2+

-desensitization 

and decreased maximal force in group 

of patients suffering Cardiomyopathies 

(13). Extrinsic stimuli are another 

reason for cardiomyopathy. 

Doxorubicin is an antineoplastic agent 

causing cardiomyocytes experience 

pathogeny. Doxorubicin not only is a 

potent agent causing mutation, but also 

directly affects the function of a variety 

of proteins (14). It changes the activity 

of the oxidation-sensitive enzyme 

creatine kinase in a cardiomyocyte 

culture model (15) and causes inhibition 

of carnitine palmitoyl transferase-1 

dependent long chain fatty acid 

(palmitate) oxidation (16). 

Regarding to the reason of 

cardiomyopathy, patients are generally 

divided in two groups termed as 

primary and secondary 

cardiomyopathies. Primary 

cardiomyopathies includes disorders 

affecting the heart muscle, which have 

genetic, nongenetic, or acquired causes. 

Secondary cardiomyopathies expresses  

disorders that have myocardial damage 

because of systemic or multi-organ 

disease (17). There is also another 

characterization depending on the type 

of functional impairment of the 

 

Figure 1 PPAR-RXR pathway:  PPAR 

and RXRs coordinately regulate gene 

expression by means of forming 

heterodimers. The heterodimer binds 

to PPREs and exerts transcriptional 

effects. 
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cardiomyocytes including three groups; 

dilated, hypertrophic, and restrictive 

cardiomyopathies (18). Restrictive 

cardiomyopathy and Arrhythmogenic 

cardiomyopathy are two other groups 

added to this classification during recent 

years (17). 

 

Heart fuel utilization and diabetes  

The heart uses various substrates for 

energy metabolism, including glucose 

and FAs. Translocation of glucose 

transporters GLUT1 and GLUT4 to the 

cell membrane regulates glucose uptake 

(19). As GLUT1 is responsible for 

continuous basal glucose transport and 

GLUT4 is regulated by insulin and 

metabolic stress, GLUT4 function is 

affected in abnormal conditions. 

Another energy source is FA that is 

used as oxidative substrate in the adult 

heart. In healthy adult heart, FA 

oxidation provides 60-70% of the 

heart's ATP requirements (3-5), but 

according to availability and 

physiological needs, this percentage 

shifts between LCFAs and glucose 

substrate. Fetal heart, pumping blood in 

a relatively hypoxic environment, 

derives energy largely from the oxygen-

sparing catabolism of glucose (20). 

Moreover, in some pathological 

conditions glucose precedes FAs, such 

as patients tolerating cardiac 

hypertrophy. On the opposite point, 

there are situations in which FAs are 

totalitarian sources of energy like DCM 

condition.  

GLUT4 trafficking is stimulated by two 

different patterns known as PI3 Kinase 

dependent and independent pathways. 

PI3 Kinase dependent pathway is well 

documented as insulin sensitive pattern, 

but the correlation of IP3 Kinase 

independent pathway and insulin 

sensitivity is controversial (21). Thus, 

the dependent pattern is pointed as an 

effective factor in patients tolerating 

diabetes and insulin resistance. 

 Insulin binding to alpha subunit of 

insulin receptor (IR) is the first critical 

step in dependent pathway causing 

conformational changes in IR beta 

subunit leading to activation of IR 

intrinsic tyrosine kinase. The activated 

IR starts phosphorylation cascades via 

peptidase inhibitor 3 (PI3) Kinase 

phosphorylation. As a downstream 

event PI3 Kinase phosphorylates 

phosphatidylinositol 4,5-bisphosphate 

(PIP2) and forms Phosphatidylinositol 

(3,4,5)-trisphosphate  (PIP3). PIP3 

activate Pyruvate Dehydrogenase 

Kinase (PKD) 1 and mammalian target 

of rapamycin (mTOR) which both 

subsequently phosphorylates 

AKT/protein kinase B (PKB). Akt is 

made up of 3 subtypes named AKT1, 

AKT2 and AKT3. AKT2 continues the 

cascade by stimulating AKT Substrate 

of  160 KDa (AS160) which acts as 

GTPase Activating Protein (GAP) for 

Rab protein (22). At last phosphorylated 

Rab protein stimulates GLUT4 to be 

expressed on the plasma membrane 

(23). 

All this processes occur in insulin 

sensitive cells, but diabetes and insulin 

resistance can block this pattern at 

initiating level. Another underlying 
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mechanism is related to the induction of 

inhibitory factors such as suppressors of 

cytokine signaling (SOCS). SOCS 

proteins block insulin signaling via 

competition with insulin receptor 

substrate (IRS)-1. Finally, increased 

activity of phosphatases which 

dephosphorylate intermediate signaling 

molecules can inhibit the insulin 

pathway (24). Taken together and as a 

result of insulin resistance GLUT4 

trafficking is diminished and 

cardiomyocytes utilize FAs chiefly.  

In diabetic cardiomyopathy, myocytes 

use LCFAs predominantly, therefore 

lipid metabolites are accumulated. 

Accumulation of lipid intermediates like 

diacylglycerol (DAG) is known to 

activate kinases such as PKC (25-28). 

As PKC is divided to three subgroups 

and each subgroup includes isotypes, 

they exert complicated effect in insulin 

pathway (29). Among isotypes, PKCθ 

and PKCε clearly play a negative role in 

insulin pathway activation (30,31). 

PKCθ not only can phosphorylate IRS 

directly (32), but also through 

intermediates. As indirect role, PKCθ 

activates stress Kinases IkBαKinaseβ 

(IKKβ) and c-Jun NH2-terminal Kinase 

(JNK) phosphorylating IRS and 

suppress insulin pathway (33). PKCε 

can inhibit IRS via direct association 

with IRS (34) and also through direct 

phosphorylation (35). Another lipid 

intermediate produced through FAO 

pathway is ceramide. It can induce 

insulin resistance at the level of Akt 

inhibition (36,37). Pharmacological 

inhibition of ceramide synthesis has 

presented an effective role in preventing 

lipid-induced insulin resistance in rats. 

As ceramides are synthesized through 

denovo pathway in cardiomyocytes 

(38), pharmacological inhibition is 

required for this pathway. Denovo 

begins with the transfer of a serine 

residue onto a fatty acyl-CoA via serine 

palmitoyltransferase (SPT) (39) to form 

dihydrosphingosine which is converted 

to dihydroceramide via Ceramide 

synthase 4 (CerS4). On the other hand, 

CerS4 also uses preferential substrate 

that is  provided via fatty acid elongase 

6 (Elovl-6) to synthesize  

dihydroceramide. As the final step 

dihydroceramide changes to ceramide. 

Myriocin, a drug originated from 

Chinese traditional medication, is an 

example of pharmacologic ceramide 

inhibitor exerting selective inhibition on 

SPT leading to reduction of ceramide 

synthesis (39,41).   

As a result of surplus FA consumption 

and blocked glucose pathway, it is 

plausible that cardiomyocytes 

experience lipotoxicity through 

oxidative stresses. Thus, it is important 

to find some metabolic controller in 

order to prevent probable risks. 

 

PPARα, PPARδ, two members of PPAR 

family 

PPARs include three subtypes termed 

PPARα, PPARδ and PPARγ. The 

subtypes have different characteristics 

including structure, tissue distribution, 

function and other features. From1990 

up to recent years PPARγ was discussed 

in detail, but less is known about other 
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subtypes, especially PPARδ. PPAR 

structure is formed by slices including 

NH2 terminal, DNA binding domain 

(DBD), hinge region and C terminal. 

NH2 terminal mediates ligand-

independent transcriptional activation, 

DBD indicates PPRE and C terminal 

encompasses ligand binding domain. 

Each slice has a unique pattern in 

PPARα and PPARδ (Fig. 2) (42). 

 

 

 

 

 

 

 

 

 

 

 

 

As different structure leads to different 

function and PPARs distribution is 

correlated with their function, each 

subtype fallows specific distribution 

pattern. PPARα is mainly distributed in 

tissues with high capacity for fatty acid 

oxidation pathway such as heart, brown 

adipose tissue, skin, slow-twitch 

skeletal muscle and liver (43-45). 

PPARδ is expressed predominantly in 

brain (46), adipose tissue, skin (45) and 

heart (47,48). Between these subtypes, 

PPARα is highly presented in liver and 

there are only some traces of PPARδ in 

hepatocytes (49). PPARα is co-

expressed with CYP4A enzymes in this 

tissue. It binds to PPRE in the P4504A1 

and 4A6 genes resulting in enzyme 

induction. Despite PPARα, PPARδ 

seems to have no regulating effects on 

the expression of CYP4A or any other 

P450 enzyme (50). Considering P450 

enzymes and especially CYP4A are 

responsible for many drugs and other 

substrates metabolization, it is 

important to recognize their common 

ligands. Fibrates are considered as the 

oldest PPARα agonist. Natural 

carotenoid abundant in seafood can also 

stimulate PPARα (51). AVE8134 is 

another PPARα agonist newly found in 

2012 and has amazing features (52). 

Unlike PPARα, PPARδ agonist is not 

well-known. GW50156 is an example 

of PPARδ agonist employed in last 

decade. As GW50156 was plausible to 

contribute to carcinogenesis and also 

athlete abuse, now it does not seem to 

be a good choice(53).  

 Similarly to structure and tissue 

distribution PPRs functions can be 

analyzed. PPARα agonist (54) reduces 

serum triglycerides (TG) and increases 

high density lipoprotein (HDL), but 

they also shows carcinogenic outcomes 

in rodents. Similarly PPARδ activation 

causes reduction and elevation of TG 

and HDL in serum, respectively. This 

activation also triggers thermogenesis, 

weight loss and other metabolic possess 

(55,56). Glucose utilization and FAO, 

two main important sources of energy 

satisfying cellular metabolic demands, 

are strongly related to PPAR 

managements. Cardiomyocytes are very 

critical cells affected by PPARs 

function via metabolic controls (57).

 
Figure 2 Schematic representation of 

PPARα and PPARδ protein domain. 

The numbers shown in the LBD and 

DBD  refers to the number of amino-

acids identified in PPARα and PPARδ. 

http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Adipose_tissue
http://en.wikipedia.org/wiki/Skin
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PPAR alpha and metabolism in cardiac 

cell 

Studies have demonstrated a serious 

role for PPARα by means of 

transcriptional control on genes 

involved in cardiac FA uptake and 

oxidation (58,59). In the heart, 

activation of PPARα increases the 

expression of genes participating to 

cellular FA utilization pathway in three 

major steps in the including fatty acid 

transport and esterification (60,62), FA 

mitochondrial import (63), 

mitochondrial (62) and peroxisomal β-

oxidation (Fig. 3) (64). Transporters and 

enzymes known to be regulated by 

PPAR are indicated by a star. 

Abbreviations: (CPT I) carnitine 

palmitoyltransferase I; (CPT II) 

carnitine palmitoyltransferase II; 

(ACOX) acyl-CoA oxidase; (TCA) 

tricarboxylic acid. 

 

Studies on PPARα null mice also 

emerged an inability to pay for 

increased cardiac workloads and 

depression of cardiac contraction 

occurs. PPARα-knockout mice display 

decreased cardiac FAO rates, but lipid 

uptake was presumably not affected, 

and cardiomyocyte lipid accumulation 

occurred. On the other hand, transgenic 

mice that over express PPARα show an 

increase in the expression of genes 

encoding key enzymes involved in 

myocyte FA uptake and oxidation (65). 

Moreover, PPARα activates pyruvate 

dehydrogenase kinase 4 (PKD4) (66). 

As PKD4 is responsible for 

phosphorylation of pyruvate 

dehydrogenase (PDH), activated PKD4 

leads to inhibition of PDH (67). PPARα 

also exert a role in glycolysis via 

elevated FA metabolites. Increased 

amount of citrate level as an outcome of 

elevated FAO pathway contributes to 

the inhibition of phosphofructokinase 

(PFK)-I resulting in suppression of 

glycolysis (68) 

 

PPARδ in cardiac cell 

PPARδ effect FA uptake negatively. 

FAs derived from serum TG, through 

lipo-proteinlipase (LPL) activation, 

seem to be the major source of FAO 

pathway (69). PPARδ can suppress the 

LPL-mediated uptake of TG-derived 

through upregulation of angiopoietin-

like 4 (Angptl 4) (70). Angptl 4 is a 

secreted protein which inhibits the LPL 

(71). PPARδ is able to avoid lipid 

accumulation by means of carnitine 

palmitoyltransferase (CPT) I. CPT1 is 

located within the mitochondrial outer 

membrane as a rate-limiting enzyme of 

mitochondrial-oxidation by controlling 

mitochondrial entry of long-chain fatty 

acids. Both PPARα and PPARδ activate 

CPT1, but the importance is behind the 

majority. CPT1has three isoforms 

termed CPT1a, CPT1b, and CPT1c. 

CPT1b is the most predominant isoform 

and contributes 98% of total cardiac 

CPT1 activity.  CPT1b is activated via 

PPARδ (72), whereas PPARα activate 

CPT1a (67). Surprisingly, PPAR 

gamma co-activator (PGC)-1α acts as 

co-activator for PPARδ in order to 

affect CPT1b (73). PGC-1α also 
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accompanies PPARδ for PKD4 

activation (73). 

 

Conclusion 

As cardiomyocyes become insulin 

resistance in diabetes, glucose pathway 

is not passed properly. Thus, cardiac 

cells utilize fatty acids excessively in 

order to respond their need, but elevated 

rate of FA consumption creates positive 

feedback for FOA pathway mainly 

through IRS phosphorylation. PPARα 

activation help cardiomyocytes to greet 

more FA from out of the cell via CD36 

and increases available FAs. In the 

opposite point, PPARδ suppress FA 

LPL-dependent uptake by activating 

Angptl4. PPARδ helps ATP production  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

via CPT1b.  This transporter continues 

FOA pathway toward mitochondria for  

β-oxidation. Both PPARα and PPARδ  

activate PDK4. PDK4 inactivate 

Pyruvate Dehydrogenase (PDH) by 

means of phosphorylation. Thus, 

cardiomyocytes are forced to end 

glycolysis at aerobic point through 

lactate production.  
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Figure 3 PPARα targets in the cellular FAO pathway. Transporters and enzymes 

known to be regulated by PPAR are indicated by a star. Abbreviations: (CPT I) 

carnitine palmitoyltransferase I; (CPT II) carnitine palmitoyltransferase II; (ACOX) 

acyl-CoA oxidase; (TCA) tricarboxylic acid. 
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