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Background: There is an intense search for the Coronavirus Disease 19 (COVID-19) cure, 
to stem the spread and burden of the disease worldwide. Studies revealed that epigenetic 
modifications impact the pathogenesis of some COVID-19 cases, which can be used as 
therapeutic targets. 

Objectives: This review articulated the role of epigenetics in the pathogenesis and 
management of COVID-19.

Methods: Relevant articles published between January 2000 and November 2020 were 
retrieved from reputable academic databases, including PubMed, SpringerLink, Scopus, and 
Google Scholar.

Results: Epigenetic modifications in the COVID-19’s pathogen, called the Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and host’s cells may influence 
susceptibility or resistance to the disease. Notably, abnormal Deoxyribonucleic Acid (DNA) 
methylation and histone modification involving immune regulatory genes and molecules, 
such as cytokines and interferon-regulated genes may compromise immune function and 
enhance the host’s susceptibility and disease severity. The hypomethylation of SARS-CoV-2’s 
receptor, called the Angiotensin-Converting Enzyme 2 (ACE2), causing its overexpression, 
can also enhance SARS-CoV-2’s infectivity. Moreover, SARS-CoV-2 can hijack the host’s 
MicroRNA (miRNA) using its miRNA and compromise the immune function, increasing 
its infectivity. Fortunately, epigenetic changes are reversible; thus, a therapy that targets the 
epigenetic changes in the affected case may reverse COVID-19. 

Conclusion: Modifications in the SARS-CoV-2 or host epigenome promote the pathogenesis and 
severity of COVID-19. Epigenetic changes are reversible, so healthcare providers are advised to 
formulate therapeutic procedures that target the causal mechanisms in the affected individual.
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Introduction

oronavirus Disease 2019 (COVID-19) 
broke out in December 2019 and shortly 
spread across several countries, leading to 
high mortality worldwide [1]. The caus-
ative agent of COVID-19 is Severe Acute 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a 
member of the genus Betacoronavirus [2]. The virus is 
related to SARS-CoV and the Middle East Respiratory 
Syndrome (MERS-CoV) [3]. However, SARS-CoV-2 
has a lower mortality rate (2.3%), compared to SARS-
CoV (9.5%) and considerably lower than that of MERS-
CoV (34.4%) [2]. The relatively low severity of SARS-
CoV-2 may explain its easy and rapid spread among 
individuals, compared to MERS-CoV and SARS-CoV 
[2]. The symptoms of COVID-19 are mainly related to 
the respiratory system; most patients may return to nor-
mal without requiring special treatment [1]. Older peo-
ple and those with underlying medical problems, such 
as cardiovascular disease, diabetes, chronic respiratory 
disease, and cancer are more prone to develop serious 
COVID-19 [1]. There is also increasing evidence that 
numerous COVID-19 patients may remain asymptom-
atic [4]. 

COVID-19 pandemic caused a global lockdown of ac-
tivities, which affected national budgets and businesses, 
and nearly caused an economic meltdown in some coun-
tries. These conditions have led to an intense search for 
the relevant vaccines and drugs, to reduce the spread of 
the virus and cure the infected. Some studies suggested 
that epigenetic modifications in individuals and SARS-
CoV-2 genomes contribute to the virus’s pathogenesis. 
Epigenetic modifications are heritable changes in gene 
expression and function without altering the genetic 
makeup [5]. Epigenetic changes may alter the expression 
of genes involved in immune response as well as the viral 
genome, predisposing to or protecting from infection [6]. 
Thus, understanding the mechanisms by which SARS-
CoV-2 epigenetically hijacks the cellular apparatus may 
help develop vaccines and therapeutic procedures. Ac-
cordingly, this review articulated epigenetic mechanisms 
in the host and viral genomes involved in the pathogen-
esis of COVID-19, as well as potential epigenetic drugs. 

Materials and Methods

Database searching and search strategy 

Academic databases searched for relevant informa-
tion included PubMed, SpringerLink, Scopus, Google 
Scholar, and Semantic Scholar. Selected search terms 

used to retrieve articles consisted of “epigenetics, epi-
genetic mechanisms, coronavirus diseases, coronavirus 
disease 2019, pathology of COVID-19, SARS-CoV-2, 
epigenetic testing, and viral infections”. Other applied 
search terms included “the role of DNA methylation in 
COVID-19, the role of histone modification in COV-
ID-19, the role of non-coding RNAs in COVID-19, and 
epigenetic drugs”. The articles collected from each data-
base were pooled together and duplicates were removed 
using EndNote. 

Criteria for the inclusion and exclusion of articles 

Included articles were in English with a focus on the 
epigenetic aspects of COVID-19. Furthermore, only ar-
ticles published from January 2000 to November 2020 
were included. Excluded articles consisted of those with-
out available full texts and those that failed to meet the 
above-mentioned inclusion criteria.

Seventy-Five articles were retrieved from the searched 
databases (Figure 1). However, after removing dupli-
cates, 68 articles were retained. The 68 articles were sub-
jected to an eligibility test and 60 articles scaled through. 
Of the 60 articles, 53 focused on the study aim; thus, 
made the final selection. 

Mechanistic links between epigenetics and CO-
VID-19 

Epigenetics is described as the study of genetic and 
non-genetic factors that control phenotypic variations 
[7]. Epigenetic modifications turn genes on or off; thus, 
altering the expression or function of the genes without 
altering the genetic constitutions [7, 8]. Epigenetic pro-
cesses are necessary for healthy cellular activities, such 
as growth and development. However, changes in genes 
that ideally protect against certain diseases could make 
individuals more susceptible to diseases [8]. Character-
istics that can induce epigenetic changes include certain 
diets and environmental chemicals [8]. Microorganisms, 
such as hepatitis B and Epstein-Barr Virus (EBV), as well 
as intracellular bacteria, can also epigenetically manipu-
late the host cells to enhance their maintenance, replica-
tion, and transmission [9]. Coronaviruses are suspected 
to alter the human epigenome, allowing them to bypass 
the host’s immune system and successfully mount and 
spread infection [6, 7]. Three major epigenetic mecha-
nisms through which microorganisms, including corona-
viruses, can manipulate the host epigenome to establish 
an infection are Deoxyribonucleic Acid (DNA) methyla-
tion, histone modifications, and non-coding RNA-asso-
ciated gene silencing [10]. Articles that focused on the 
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mechanistic links between epigenetics and COVID-19 
are summarized in Table 1.

The role of DNA methylation in COVID-19 
pathogenesis

DNA methylation is an epigenetic mechanism involv-
ing the addition of a methyl group to a cytosine residue 
in a Cytosine-guanine Sequence (CpG) [10]. There exist 
clusters of CpG sites in the cells (i.e., CpG island) whose 
methylation in a gene promoter may silence the gene [10]. 
The binding of methyl groups is modulated by a group 
of enzymes collectively called DNA Methyltransferases 
(DNMTs), which include DNMT1, DNMT2, DNMT3a, 
DNMT3b, and DNMT3L [5, 10]. DNA methylation is 
involved in microbial infection, of which, the abnormal 
methylation of certain genes involved in infection mount-
ing and immune response may enhance viral infection. 

Some microbes may also epigenetically manipulate the 
host cell to enhance infectivity. SARS-CoV-2, in particu-
lar, invades the host cells by attaching to a receptor en-
codes by a gene, called Angiotensin-Converting Enzyme 
2 (ACE2). However, the binding affinity of the virus de-
pends on the methylation and expression of ACE2, i.e., 
influenced by the functional state of the immune system. 

The immune function is influenced by age, health status, 
gender, and even the genome of SARS-CoV-2. The differ-
ential methylation and expression of ACE2 in individu-
als may therefore be partly responsible for the variations 
observed in COVID-19 vulnerability. Hypomethylation 
increases the expression and virus binding ability of the 
ACE2, while hypermethylation decreases it. Diseases 
(health status), particularly immune-mediated diseases, 
can cause hypomethylation of the ACE2, resulting in its 
overexpression and increased affinity for SARS-CoV-2. 

Table 1. Mechanistic links between epigenetics and COVID-19 

Mechanisms References

DNA methylation 5, 10, 11, 12, 13, 14, 15, 16, 17, 18

Histone post translational modification 5, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26

Non-Coding RNA* gene silencing 10, 27, 28, 29, 30, 31, 32, 33

* RNA: Ribonucleic Acid

Figure 1. The PRISMA flow diagram of article selection
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The hypomethylation of ACE2 in diseased individuals 
may be further aggravated by a viral infection. For ex-
ample, Sawalha et al. [11] indicated that oxidative stress 
caused by SARS-CoV-2 exacerbated the hypomethylation 
of ACE2-induced lupus, increasing the odds of infection. 

Females are prone to encounter the effects of disease-
mediated hypomethylation of ACE2. This is because the 
reduced DNA methylation may cause a defective X chro-
mosome inactivation [12]. This may further upregulate 
X-linked genes, which include the ACE2. DNA meth-
ylation is essential for inactivating the X chromosome in 
which expressing one copy of the X chromosome in fe-
males is repressed [11]. This is necessary to maintain the 
normal expression level of female cells, comparable to 
male cells [11]. In a study of COVID-19 patients by Cor-
ley and Ndhlovu [13], DNA methylation analysis at two 
CpG sites related to the ACE2 gene suggested that female 
subjects were significantly hypomethylated, compared to 
males [13]. This could have resulted from the disruption 
of inactivation of the X chromosome, upregulating its 
genes, including the gene that codes for ACE2; thus, cul-
minating in increased susceptibility to COVID-19. 

Aside from ACE2, immune-related diseases, like lu-
pus may cause the demethylation of interferon-regulated 
genes, like the nuclear factor kappa light chain enhancer 
of activated B cells (NFκB), as well as certain cyto-
kine genes [11]. The demethylation of these genes may 
cause an overreaction of the immune response to SARS-
CoV-2, resulting in cytokine storm [11]. A cytokine 
storm may induce autoimmunity, leading to cell death 
and organ failure [14]. Multiple other immune-mediated 
diseases may produce similar effects as lupus. For exam-
ple, Chai et al. [15] observed the hypomethylation and 
overexpression of ACE2 in COVID-19 patients express-
ing different tumor types. Other members of the coro-
navirus family, such as MERS-CoV and SARS-CoV, as 
well as H5N1 influenza, have been manifested to com-
promise the immune function through DNA methylation 
and histone modifications to mount infections [16]. Ad-
ditionally, SARS-CoV uses ACE2 as the receptor and 
can epigenetically induce overexpression of the receptor 
to cause infection [17]. Collectively, these data revealed 
that epigenetic modifications may promote viral entry, 
infectivity, abnormal immune reactions to SARS-CoV-2, 
and severe COVID-19 [11, 14].

Regarding aging, it may cause the hypomethylation of 
ACE2 through immune function decline, compromising 
viral defenses, including adaptive immune memory [18]. 
The methylation of the CpGs in the ACE2 promoter de-
clines with age [18], which could overexpress the ACE2 

gene and increase its viral binding affinity. In a genome-
wide DNA methylation study of freshly isolated airway 
epithelial cells of non-asthmatics SARS-CoV-2 patients, 
the levels of methylation of a CpG site (cg08559914) 
near the ACE2 gene correlated with biological age [13]. 
Furthermore, RNA sequences from the lung of young 
males presented significantly low methylation and high 
levels of transcription, compared with fetal and female 
lungs [13]. Thus, the decreasing methylation of ACE2 
as aging progress could partly explain while most el-
derly manifest a more severe form of COVID-19 [13]. 
Coronaviruses may facilitate the aging of the immune 
system through epigenetic alterations, enhancing the 
virus’s infectivity [18]. MERS-CoV, for instance, may 
compromise host antigen presentation by disrupting 
DNA methylation, silencing genes that encode major his-
tocompatibility complexes [18]. 

The role of histone modifications in COVID-19 
pathogenesis

Histones are the major proteins (called chromatin) in 
the chromosome that condense and help package DNA in 
the chromosomes [19]; thus, histone modifications may 
affect numerous biological processes. Histone modifi-
cations are changes in the chromatin structure that may 
alter the expression and function of the embedded genes 
[20]. The histone’s N-termini, called histone tails, extend 
from the globular protein unit, making the tails the tar-
gets for histone modifications [21]. Mechanisms that can 
modify histones include acetylation, methylation, phos-
phorylation, and ubiquitylation [5]. However, acetylation 
and methylation are the most frequent histone modifica-
tions [5]. The enzymes that catalyze histone acetylation 
and methylation are Histone Acetyltransferases (HATs) 
and Histone Methyltransferases (HMTs), while Histone 
Deacetylases (HDACs) and Histone Demethylases 
(HDMs) catalyze deacetylation and demethylation, re-
spectively [20]. In humans, factors that can modify his-
tones include diets, chemicals, pathogens, as well as 
diseases, and aging [16]. Certain diseases may modify 
the histone, upregulating the ACE2 and increasing CO-
VID-19 susceptibility. In a study that compared lung 
transcriptomes in individuals with comorbidities related 
to severe COVID-19, such as diabetes mellitus and vas-
cular diseases, ACE2 was overexpressed in the individu-
als, compared to the non-affected individuals [22]. No-
tably, the analyses revealed histone modification, which 
upregulated ACE2-related genes, such as Histone Acetyl-
transferase 1 (HAT1), Histone Deacetylase 2 (HDAC2), 
and Lysine Demethylase 5B (KDM5B) [22]. This finding 
suggested that individuals with such diseases may experi-
ence a high odds of expressing severe COVID-19. 
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There is a dearth of literature on the histone-modifying 
activities of SARS-CoV-2. However, some studies docu-
mented highly pathogenic viruses, including the corona-
viruses may induce the loss of the antiviral functions of 
interferon-regulated genes within the host by repressing 
the histone, enhancing infection. A study compared the 
interferon-regulated gene response patterns following 
Asian avian influenza (H5N1 & HPAI), SARS-CoV, and 
MERS-CoV infections. 

The relevant data suggested that the viruses used similar 
approaches to antagonize the global interferon-regulated 
gene response [23]. The viruses induce repressive histone 
modifications, which downregulate interferon-regulated 
genes’ expression [23]. Another study analyzed the epi-
genetic changes following influenza infection; accord-
ingly, the hypoacetylation of the histone was observed 
[24]. The epigenetic changes inactivate embedded genes, 
enhancing influenza virus infection [24]. Particularly, the 
influenza virus induces the hypomethylation of histone 
H3 lysine 79 (H3K79), which increases the virus’ repli-
cation. In the same study, the methylation of H3K79 was 
demonstrated to control the replication of the influenza 
virus and some other potent interferon-disrupting viruses 
[24]. Thus, H3K79 methylation may help control inter-
feron disruption by viral pathogens [24]. Furthermore, 
SARS-CoV was suggested in a study to change histone 
methylation, accompanied by the overreaction of inter-
feron-response genes [18]. SARS-CoV-2, being geneti-
cally similar to SARS-CoV, may likely induce a similar 
immune response.

Aging may accelerate histone modification, declining 
immune function, and promoting infectivity. Changes in 
chromatin are increasingly linked with cellular and organ-
ismal aging in several species [25]. Immune cells from 
young individuals possess a strong and healthy chromatin 
structure protected from damage by long telomeres and 
compacted heterochromatin [25]. Furthermore, chroma-
tin in aged cells, expresses shortened telomeres, disrupted 
epigenome, and loose heterochromatin [25]. 

Data on age‐related genome‐wide changes in histone 
modifications in mammalian cells are scarce. However, 
the RNA sequence of the mouse germ cell line manifest-
ed histone modification, which reduced histone H3 lysine 
27 trimethylation (H3K27me3) and upregulated ACE2 
expression. A similar observation was documented in hu-
man embryonic stem cells in which ACE2 was overex-
pressed in the absence of the enhancer of zeste homolog 
2 (EZH2), the major enzyme catalyzing H3K27me3 [26]. 

The role of Non-coding RNAs in COVID-19 
pathogenesis 

Non-Coding RNAs (ncRNAs) are functional RNA 
molecules, i.e., transcribed from DNA but not translated 
into proteins [10]. Non-Coding RNAs include miRNA, 
Small Interfering RNA (siRNA), Piwi Interacting RNA 
(piRNA), and Long Non-Coding RNA (lncRNA) [10]. 
Non-coding RNAs control gene expressions at transcrip-
tional and post-transcriptional stages [10]. However, not 
all ncRNAs are involved in epigenetic modifications 
[10]. Those that affect epigenetic modifications can be 
classified into the short ncRNAs (<30 nucleotides) and 
the long ncRNAs (>200 nucleotides) [10]. The short 
ncRNAs can be divided into 3 subgroups of miRNAs, 
siRNAs, and piRNAs. 

RNA post-transcriptional modifications by ncRNAs 
play critical roles in the life cycles of certain viruses, in-
cluding human coronavirus [27]. Adenosine methylation 
in particular, such as N6-Methyladenosine (m6A), N6-
adenosine methylase (m6Am), and 2’-O-methylation 
(2′-O-me) were reported to affect the viability of specific 
RNA viruses such as coronaviruses [27]. Adenosine 
methylation modulates viral cap structures, viral repli-
cation, innate sensing pathways, and the innate immune 
response [27]. Moreover, coronaviruses and other virus 
species encode their methyltransferase for self-methylat-
ing adenosine residues, promoting immune evasion [27]. 
This makes the viral epitranscriptome an attractive target 
for therapeutic intervention [27]. N6-Methyladenosine is 
the most common and abundant eukaryotic RNA modi-
fication, accounting for >80% of all RNA methylations 
[27]. N6-Methyladenosine exhibits pro- and anti-viral 
activities, depending on the virus species and host cell 
type [27]. The RNA genome of SARS-CoV-2 contains 
>50 potential m6A sites and ≥0.64% of all adenosines, or 
0.18% of all bases, in SARS-CoV-2 RNA could be m6A 
[27]. The gain or loss of m6A can cause significant func-
tional changes to RNA viruses, altering host cell fusion/
entry, replication, transmission, pathogen intensity, and 
immune evasion [27]. The m6A epitranscriptome of host 
cells influences host resistance and can undergo altera-
tions after viral infection [27]. Accordingly, epigenetic 
drugs and therapies that target viral and host m6A modi-
fications may control RNA viral infection, including CO-
VID-19, in patients expressing epigenetic changes [27].

Several studies revealed that the miRNAs of the host 
may attach to the genomes of the RNA virus to prevent 
the translation and replication of the virus [28]. Some-
times, the host may induce changes in miRNA expres-
sion, increasing its antiviral effects or activities; thus, 
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decreasing viral replication [28]. However, some RNA 
viruses can change the expression of the host miRNAs, 
repressing the host transcriptome, culminating in in-
creased viral infectivity [28]. For instance, the influenza 
virus was introduced to repress host miR-24, increasing 
furin protease levels as well as the virus’s replication 
[29]. Furthermore, miR-146a-5p overexpression fol-
lowing a coronavirus infection of human hepatocytes 
enhanced the virus’s replication and infectivity [30]. In 
a study that sequenced lung samples from SARS-CoV 
and influenza virus-infected mice by Peng et al. [32], the 
differential expression of several small ncRNAs, includ-
ing miRNAs (small nucleolar RNAs) were observed. 
Collectively, viruses encode miRNAs that control the 
expression of both human and viral genes, contributing 
to the pathogenicity of viruses [32]. 

In a genome scanning of SARS-CoV-2, viral and hu-
man miRNAs, as well as targets and biological pro-
cesses involved in the pathogenesis of the virus, were 
established. Host immune response and epigenomes are 
the main cellular processes regulated by the miRNAs of 
SARS-CoV-2 [33]. It was observed that human miR-
4661-3p targets the S gene of SARS-CoV-2 to control 
it. However, SARS-CoV-2 miRNA MR147-3p enhances 
the expression of transmembrane serine protease 2 (TM-
PRSS2) genes, increasing SARS-CoV-2 infection. As a 
result, the virus genome can hijack host miRNA to com-
promise host biological processes involved in immune 
response [33]. A virus can suppress the RNA-interfer-
ence pathway of the host by using viral miRNA or pro-
teins to target cellular or viral transcripts [32]. 

Epigenetic tests for COVID-19

There exist epigenetic tests that can accurately detect 
epigenetic modifications caused by SARS-CoV-2. Ac-
cording to Karow [34], and epigenetic test that detects 
epigenetic changes in DNA from blood samples was de-
veloped by researchers from some medical institutions, 
notably Mount Sinai’s Icahn School of Medicine. The 

test detects disease-specific DNA methylation changes, 
which can be used to detect SARS-CoV-2 early. In-
terestingly, the new epigenetic test gives an appropri-
ate COVID-19 diagnosis where genetic tests, such as 
exome sequencing and microarrays are ineffective [34]. 
Researchers and clinicians can also use the methylation 
profiling provided by the epigenetic test to distinguish 
severe cases from mild ones [34]. 

Some applications have also been developed which can 
help clinicians efficiently detect SARS-CoV-2, determine 
the risks and severity of COVID-19, and can be used to 
personalize treatment for patients. For instance, a compa-
ny known as Diagenode offers tools, such as Megaruptor 
3 and MicroPlex Library Preparation for sample prepara-
tion to sequence IGH/MHC immunology gene regions 
[35]. The company also produces RRBS/WGBS/MeDIP 
kits and histone modification antibodies and ChIP kits 
for global methylation and histones/chromatin modifica-
tions detection, respectively [35]. Generally, these tools 
can help detect DNA methylation alterations induced 
by SARS-CoV-2, i.e., effective to conduct large human 
cohort studies [35]. The tools can also characterize ge-
nomic regions that are involved in the immune response 
to SARS-CoV-2, to determine the severity of the disease. 
Furthermore, the tools can characterize the viral genome, 
to understand viral mutations [35]. 

Potential epigenetic drugs for COVID-19

There is no specific epigenetic drug or preparation 
for COVID-19. However, epigenetic mechanisms are 
similar in all cellular activities and disease pathologies; 
therefore, some epigenetic drugs formulated for other 
diseases may be effective in managing COVID-19. CO-
VID-19 induced by the overexpression of ACE2 due to 
DNA hypomethylation can be reversed or reduced by 
methyl-adding epigenetic drugs. Methyl donating com-
pounds, such as folate may reverse hypomethylation 
in COVID-19 patients and normalize the expressions 
of ACE2 [36]. Folate is a water-soluble B vitamin, i.e., 

Table 2. The potential epigenetic drugs for COVID-19

Epigenetic Drugs References

Methyl-adding epigenetic drugs 36, 37, 38, 39, 40

I-BET151 5, 41, 42

Oligonucleotides (anti-miRNAs) 43, 44, 45, 46, 47

Histone inhibitors 48, 49, 50, 51, 52, 53
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known to boost DNA methylation and epigenetic con-
figuration [37]. Other compounds that contain a methyl 
group include methionine, choline, betaine, and vitamin 
B-12 [38, 39]. Alternatively, hypomethylation can be re-
versed by blocking the enzyme that catalyzes it, called 
Ten-Eleven Translocation (TET) [40]. 

In cases where the virus compromises the immune 
function and upregulates the immune cells, like cyto-
kines, causing an inflammatory response and cytokine 
storms, some epigenetic drugs may neutralize or repress 
the immune cells. Some epigenetic drugs have been de-
veloped along this line, notable among which is an epi-
genetic drug known as I-BET151 [5]. The drug was de-
veloped by researchers at Harvard Medical School and 
GlaxoSmithKline and was demonstrated to repress over-
reactive cytokines, macrophages, T cells, among several 
immune cells [41, 42]. The drug does these by deacti-
vating NFkB-mediated genes. I-BET151 also boosts the 
expression of some anti-inflammatory molecules [42]. 

For COVID-19 induced by the overexpression of vi-
ral miRNAs due to hypermethylation, complementary 
single-stranded oligonucleotides otherwise called anti-
miRNAs can be used to suppress the virus’s infectivity 
[43]. The hypomethylation of the host miRNAs makes it 
to be susceptible to SARS-CoV-2; it can also be normal-
ized by adding RNA molecules analogous to the precur-
sors of the target miRNA or adding oligonucleotides that 
mimic the mature form of the miRNA of interest [44]. 
Some proven anti-miRNAs include Locked Nucleic 
Acid (LNA), antagomirs, morpholinos, byetta, victoza, 
trulicity, janu-via, onglyza, and tradjenta [45-47].

Histone post-translational modification is performed 
by some enzymes, such as Histone Acetyltransferases 
(HATs) and Histone Deacetylases (HDACs). Thus, 
for COVID-19 that initiates with histone modification, 
blocking, or deleting these enzymes may be helpful [48, 
49]. Some common histone inhibitors which have been 
tested on some diseases, such as cancers and diabetes are 
RGFP966, vorinostat, romidepsin, and belinostat [50, 
51]. Several dietary substances are under investigation 
as potential HDAC and HAT inhibitors. In particular, 
sulforaphane (an isothiocyanate isolated from broccoli 
sprouts) and diallyl disul-fide (an organosulfur compound 
in garlic), was demonstrated to act as HDAC inhibitors 
[52, 53]. Table 2 presents a brief recap of potential epi-
genetic drugs for COVID-19. 

Conclusion

The current review study established that epigenetic 
modifications in the human and SARS-CoV-2 genome 
impact COVID-19 pathogenesis. Alterations in epigen-
etic mechanisms, such as DNA methylation, histone 
modification, and non-coding RNAs may compromise 
the immune system and enhance host susceptibility to 
COVID-19. The alterations may also overexpress the 
virus’s receptor, known as ACE2, increasing the virus’ 
binding affinity and infectivity. These alterations may 
be induced by the virus’s genome or the host’s cellular 
processes, such as aging and certain diseases. Thus, the 
elderly and diseased are more susceptible and often ex-
pressed a more severe form of COVID-19. Epigenetic 
mechanisms are reversible and, as such, a therapeutic 
strategy that targets the epigenetic mechanisms that 
modulated COVID-19 in the affected individuals may 
reverse the disease.
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