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Original Article
A Study on the Alteration of Endoplasmic Reticulum 
Stress-related Proteins in Cyclophosphamide-induced 
Damage to Urothelium

Background: Cyclophosphamide is widely prescribed as an anti-cancer drug and used 
as an immunosuppressant. Hemorrhagic cystitis is one of the common complications of 
cyclophosphamide intake. We hypothesized that endoplasmic reticulum stress-related proteins 
could be altered in urothelium treated with cyclophosphamide. 

Objectives: We checked the effect of cyclophosphamide on the expression of various 
endoplasmic reticulum stress-related proteins in Vero cells. 

Methods: We treated Vero cells with varying doses of cyclophosphamide and observed 
its viability in flow cytometry using propidium iodide staining. We looked for changes in 
the expression of endoplasmic reticulum stress-related proteins in Vero cells treated with 
cyclophosphamide by western blot technique. 

Results: Cyclophosphamide at higher doses caused more death in Vero cells that could be 
attributed to an increase in apoptosis as evidenced by the changes in the morphology of cells 
and increased expression of endoplasmic reticulum specific caspase-12 proteins. Growth 
arrest/DNA damage 153 (GADD 153), one of the key transcription factors involved in the 
mediation of endoplasmic reticulum stress and apoptosis, was upregulated in Vero cells 
treated with cyclophosphamide. The protective effect of glucose-regulated protein GRP 78 
against apoptosis was lost in Vero cells treated with a higher dose of cyclophosphamide, which 
is corroborated by decreased expression of GRP 78 in Vero cells treated with higher doses 
compared to Vero cells treated with lower doses of cyclophosphamide. Expression of disulfide 
isomerase protein, which guides misfolded proteins to fold properly, was downregulated in 
Vero cells treated with cyclophosphamide. 

Conclusion: To summarize, our study showed an alteration in the expression of key 
endoplasmic reticulum stress-related proteins in Vero cells treated with cyclophosphamide.
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Introduction

yclophosphamide is widely used to treat 
solid malignancies (breast and ovarian 
cancer) [1, 2], hematological malignan-
cies (chronic lymphocytic leukemia and 
non-Hodgkin’s lymphoma) [3, 4], and 
childhood malignancies (acute lympho-

blastic leukemia and retinoblastoma). With its immu-
nosuppressant effect, cyclophosphamide is used for 
hematopoietic stem cell transplantation and treating 
autoimmune diseases like multiple sclerosis, systemic 
lupus erythematosus, scleroderma, and rheumatoid ar-
thritis [5]. Cyclophosphamide is an inactive prodrug, 
which upon metabolism in the liver [6], converts to 
phosphoramide mustard and acrolein [7]; the former 
compound is responsible for the cytotoxicity of cancer 
cells through DNA cross-links, and the latter compound 
is responsible for hemorrhagic cystitis seen in patients 
taking cyclophosphamide.

Though cyclophosphamide has a far outreaching thera-
peutic effect on various disease conditions, its associated 
toxicities are a major limiting factor in using this drug. 
Intake of cyclophosphamide is associated with bone 
marrow suppression leading to pancytopenia, cardiotox-
icities like arrhythmia and myocarditis, gonadal failure 
in women, and hemorrhagic cystitis [8].

Hemorrhagic cystitis is the most common urological 
complication of cyclophosphamide, and its incidence 
ranges between 12% and 40% in those on cyclophos-
phamide [9]. Mild hemorrhagic cystitis could be man-
aged with hydration, whereas moderate and severe 
forms of hemorrhagic cystitis warrant invasive inter-
ventions like clot extraction using cystoscopy or could 
even lead to cystectomy. Acrolein, a byproduct of cy-
clophosphamide metabolism, accumulated in the blad-
der and was thought to be the key player in initiating 
hemorrhagic cystitis. Acrolein was shown to increase 
the generation of reactive oxygen species (ROS), there-
by causing cell death. Acrolein increases nitric oxide 
production by activating inducible nitric oxide syn-
thase (iNOS) [10]. Acrolein favors peroxynitrate for-
mation through ROS and nitric oxide; peroxynitrates 
can damage proteins, lipids, and DNA [11].

Mesna (sodium-2-mercaptoethanesulfonate) was tout-
ed as a promising agent to prevent cyclophosphamide-
induced hemorrhagic cystitis. Metabolite of mesna, i.e. 
dimesna, when acted upon by glutathione dehydroge-
nase, generates free sulfhydryl groups, facilitating the 
excretion of acrolein from the bladder [12]. However, 

some studies clearly show that hyperhydration has simi-
lar effects in preventing hemorrhagic cystitis compared 
to mesna administration in patients on cyclophospha-
mide [13]. Mesna was also shown to have no uropro-
tective effect in a study where mesna was given along 
with cyclophosphamide in rheumatic disease patients 
[14]. In addition, mesna administration has side effects, 
like cutaneous and systemic hypersensitivity reactions 
[15]. There is a strong need for novel therapeutic agents 
to prevent the emergence of hemorrhagic cystitis in pa-
tients on cyclophosphamide regimens.

Lack of complete understanding of the molecular level 
changes in urothelium during cyclophosphamide admin-
istration is part of the failure to develop a drug molecule 
that can prevent hemorrhagic cystitis. Our previous re-
search findings demonstrated that cyclophosphamide 
enhanced the production of reactive nitrogen species 
[16]. Endoplasmic reticulum stress-related proteins are 
often activated in conditions with increased production 
of reactive oxygen species [17]. Since cyclophospha-
mide administration increases ROS, we hypothesized 
that cyclophosphamide administration would alter the 
expression of endoplasmic reticulum stress-related pro-
teins in the urothelium. In this study, we were interested 
in seeing the expression of endoplasmic stress-related 
proteins in the urothelial cells (Vero cell line) exposed to 
varying doses of cyclophosphamide.

Materials and Methods

Cell culture

Vero cells obtained from American Type Culture Col-
lection, USA, were grown as a monolayer in minimum 
essential medium, supplemented with 10% fetal bo-
vine serum, sodium bicarbonate, HEPES, 100 U/mL of 
penicillin, 100 µg/mL of streptomycin, and 25 ng/mL 
of amphotericin-B. Cells were cultured under 5% CO2 
in a humidified incubator at 37°C. The medium was 
changed every 3-4 days. When the cells reached >90% 
confluency, they were subcultured using 0.25% trypsin-
EDTA (Gibco). Cyclophosphamide was obtained from 
Sigma Chemicals. Cells were plated at 8000 cells/cm2 

on a polystyrene culture dish coated with poly-L-lysine. 
Cells were incubated with various concentrations of cy-
clophosphamide (1.2, 2.4, 4.8, 9.6, and 12 mg/mL) for 
24 h at 37°C. The cells were visualized, and their mor-
phology was studied using a phase-contrast microscope.

C
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Cell viability determination by flow cytometry

Cells treated with different doses of cyclophosphamide 
for 24 h were trypsinized and collected in a culture me-
dium. Cells were then resuspended in propidium iodide 
dissolved in phosphate buffer solution and incubated 
at room temperature in the dark for 15 minutes. Prop-
idium iodide-stained cells were then analyzed in a flow 
cytometer using the excitation wavelength of 488 nm. 
Unstained and untreated cells were also analyzed at 488 
nm of wavelength.

Western blot analysis

For protein analysis, 3×105 cells were seeded in 6-well 
dishes, and the cells were harvested 24 h following cyclo-
phosphamide treatment with different doses as described 
above. Vero cells were washed with cold PBS, and the 
cells were resuspended in 200 μL of lysis buffer (10 mM 
Tris pH7.4, 150 mM NaCl, 5 mM EDTA pH=8, 0.1% 
Triton-X, 1 mM DTT, 1 mM PMSF, 1 mM Na3VO4, and 
0.2% protease inhibitor cocktail [Sigma]), and incubated 

on ice for 30 min. The cell lysates were centrifuged for 
30 min at 12000 g. Protein concentrations in the superna-
tants were determined by Lowry’s method. For western 
blot analysis, 50 µg of lysate proteins were resolved over 
10% SDS-polyacrylamide gel electrophoresis and trans-
ferred to PVDF transfer membranes (Whatman, UK). 
The membranes were blocked with 5% nonfat dry milk 
in buffer (10 mM Tris-HCl [pH=7.6], 100 mM NaCl, and 
0.1% Tween 20) for 1 h at room temperature and then 
incubated with the desired primary antibody anti-protein 
disulfide isomerase (PDI) (1:1000), anti-growth arrest/
DNA damage 153 (GADD153) (1:500), anti-caspase-12 
(1:1000), anti-glucose-regulated protein 78 (GRP 78) 
(1:1000) from (Sigma), and anti-β-actin (1:2000) over-
night at 4°C, followed by incubation with horseradish 
peroxidase-conjugated secondary antibody anti-rabbit or 
mouse (Thermo, Waltham, MA) at 1:2000 dilution for 2 
h at room temperature. The representative immunoreac-
tive bands of proteins were visualized with ECL West 
Dura substrate, and their intensity was quantitated using 
a chemiluminescent imaging system (FluorChem TM 
SP, Alpha Innotech). The levels of proteins were normal-

D) 4.8 mg of CP    E) 9.6 mg of CP   F) 12 mg of CP          

Figure 1. Morphology of Vero cells exposed to various doses of cyclophosphamide (CP) 
A) Phase contrast microscopy image of untreated control cells, B) cells treated with 1.2 mg of cyclophosphamide showing 
fewer apoptotic cells, C) cells treated with 2.4 mg of cyclophosphamide showing fewer apoptotic cells, D) cells treated with 
4.8 mg of cyclophosphamide showing changes in morphology and more apoptotic cells, E) cells treated with 9.6 mg of cyclo-
phosphamide showing more rounded and apoptotic cells, and F) cells treated with 12 mg of cyclophosphamide showing more 
apoptotic and fragmented cells.

A) Control cells    B) 1.2 mg of CP   C) 2.4 mg of CP
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ized to that of β-actin. Western blot analysis of the pro-
teins was done in three independent experiments. 

Statistical analysis

Statistical analysis was done using RStudio Team 
(2021) (RStudio: Integrated Development Environment 
for R. RStudio, PBC, Boston, MA URL http://www.rstu-
dio.com). The normality of the data was assessed by the 
Shapiro-Wilk test. Normally distributed data were ana-
lyzed by ANOVA test. The Kruskal-Wallis test analyzed 
data that are not normally distributed to assess the differ-
ence between the various treatment groups, followed by 
post hoc Bonferroni correction for identifying the sig-

nificant difference between individual groups. P<0.05 
was considered statistically significant.

Results

Dose-dependent effect of cyclophosphamide on 
the viability of Vero cell line

Vero cells treated with cyclophosphamide for 24 h 
exhibited a dose-dependent effect on viability; with an 
increase in cyclophosphamide dosage, the cells increas-
ingly showed features of apoptosis, such as more round-
ed and fragmented cells (Figure 1A-1F).

A. Propidium iodide staining

B. Vero cells exposed to different doses of CP

Figure 2. Effect of 24 h exposure to cyclophosphamide (CP) on the viability of Vero cells
A) Viability of the cells was assessed by propidium iodide staining and subsequent analysis in a flow cytometer at 488 nm, 
and B) Percentage of dead cells as assessed by flow cytometer in Vero cells exposed to different doses of cyclophosphamide.
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The viability of the Vero cells treated with increasing 
doses of cyclophosphamide was also checked using 
propidium iodide staining, which preferentially stains 
dead cells due to membrane damage seen specifically 
in dead cells (Figure 2A). There was a dose-dependent 
increase in the death of Vero cells; with increasing dos-
age of cyclophosphamide, the proportion of dead cells 
increased in Vero cells (Figure 2B). 

We checked whether apoptosis was the cause of death 
in the cyclophosphamide-treated cells. Caspase-12 over-
expression is associated with increased apoptosis. Cas-
pase-12, particularly seen in the endoplasmic reticulum, 
is upregulated in conditions that cause endoplasmic re-
ticulum stress and is known to induce apoptosis [18]. 
Caspase-12 expression was upregulated in Vero cells 
treated with higher doses of cyclophosphamide (Figure 
3A, 3B). The difference between the cyclophosphamide 
treatment groups regarding caspase-12 expression was 

not statistically significant but closer to significance 
(P=0.06). 

Effect of cyclophosphamide on endoplasmic re-
ticulum stress-related proteins GADD 153

GADD 153 expressions induced cell death by down-
regulating Bcl2 expression and depleting thiols in the 
cell [19]. Vero cells treated with different doses of cyclo-
phosphamide for 24 hours led to increased expression of 
GADD 153 proteins across all the groups compared to 
the untreated control cells (Figure 4A, 4B). The differ-
ence in the expression of GADD 153 proteins among the 
groups treated with different doses of cyclophosphamide 
approached closer to statistical significance (P=0.07). 

Glucose regulated protein (GRP 78)

Glucose-regulated proteins (GRP) are chaperones 
produced in response to endoplasmic reticulum stress. 

B. Quantification of Caspase-12 bands in western blot

Figure 3. Expression of Caspase-12 protein in cyclophosphamide-treated Vero cells 
 A) Western blotting image of caspase-12, with β-actin was used as a loading control, and B) Fold change in expression of 
caspase-12 as compared to control and the difference in expression of caspase-12 between the groups was analyzed by Kruskal-
Wallis test (P=0.06). Quantification value expressed as median and interquartile range.
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Treatment of Vero cells with different doses of cyclo-
phosphamide for 24 hours leads to a decrease in the 
expression of GRP 78 at higher doses (Figure 5A, 5B). 
There was a statistically significant difference (P=0.028) 
in the expression of GRP 78 proteins among the groups 
treated with different doses of cyclophosphamide. How-
ever, post hoc Bonferroni correction did not show a dif-
ference in the expression of GRP 78 protein between any 
two treatment groups. 

Protein disulfide isomerase

PDI, along with GRPs, helps in the proper folding of 
misfolded proteins, improving cells’ survival. PDI pro-
tein expression was downregulated in cyclophospha-
mide-treated Vero cells compared to the untreated control 

groups (Figure 6A, 6B). The difference in the expression 
of PDI among the groups treated with different doses was 
found to be closer to statistical significance (P=0.0547). 
Exposure of cyclophosphamide to Vero cells downregu-
lated the expression of cell-protective PDI, whose natural 
role is to improve the viability of cells.

Discussion

Endoplasmic reticulum stress activates unfolded pro-
tein response (UPR) to promote cell survival. However, 
prolonged activation of UPR could lead to cell death 
[20]. Toxic elements like cadmium increased cell death 
in renal epithelial cells by activating the endoplasmic 
reticulum stress pathway [21]. Recently it was shown 
that Tilapia (Oreochromis niloticus), when injected with 

Figure 4. Expression of growth arrest/DNA damage 153 (GADD 153) protein in cyclophosphamide-treated Vero cells
A) Western blotting image of GADD 153, with β-actin used as a loading control, and B) Fold change in expression of GADD 153 
expression compared to control and the difference in expression of GADD 153 between the groups were analyzed by ANOVA 
test (P=0.07). Quantification value expressed as mean±SE.
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cyclophosphamide, developed liver injury by increasing 
the expression of endoplasmic reticulum stress-related 
genes [22]. Reduction of endoplasmic reticulum stress-
related protein by inhibiting Brd4 resulted in apoptosis 
blockage and is considered a therapeutic approach to 
ischemia/reperfusion injury in the kidney [23]. Cyclo-
phosphamide is shown to activate endoplasmic reticu-
lum stress, and endoplasmic reticulum stress, in turn, can 
lead to the death of renal epithelial cells; we thought it 
would be interesting to see whether there is a link be-
tween cyclophosphamide usage and endoplasmic reticu-
lum stress in the urothelium. 

Recently endoplasmic reticulum stress inhibitors have 
been tried for their beneficial effect in various condi-

tions. 4-Phenylbutyrate, a known endoplasmic reticulum 
stress inhibitor, alleviates intestinal injury by inhibit-
ing ER stress-related proteins [24]. Neuronal apoptosis 
mediated by endoplasmic reticulum stress is one of the 
crucial factors in initiating neurodegenerative disease in 
diabetes. ER stress inhibitor 4-phenylbutyrate was pro-
tective against neurodegenerative disease by inhibiting 
endoplasmic reticulum stress in a mouse model [25].

The key to successfully using cyclophosphamide in 
various clinical scenarios is reducing its toxic effects. 
Hemorrhagic cystitis is one of the common complica-
tions that arise out of the usage of cyclophosphamide. 
This study showed that an increased dosage of cyclo-
phosphamide causes increased cell death in Vero cells, 

Figure 5. Expression of glucose-regulated proteins (GRP) 78 protein in cyclophosphamide-treated Vero cells
A) Western blotting image of GRP 78, with beta-actin used as a loading control, and B) Fold change in expression of GRP 78 as com-
pared to control and the difference in expression of GRP 78 between the groups were analyzed by the Kruskal-Wallis test (P=0.028, 
with no significance in post hoc Bonferroni correction). Quantification value expressed as median and interquartile range.
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possibly by inducing endoplasmic reticulum-specific 
caspase-12. This caspase is present specifically in the 
endoplasmic reticulum, and its upregulation is shown 
to induce apoptosis in cells. GADD 153 (Chop) is a 
transcription factor expressed at low levels in normal 
and higher levels in conditions leading to endoplasmic 
reticulum stress [26]. We observed that the expression 
of GADD 153 protein was upregulated across treatment 
groups with different doses of cyclophosphamide, which 
could be one of the reasons for cell death. GADD 153, 
maintained at a low concentration within the cell, gets 
elevated when there is endoplasmic reticulum stress, 
which could promote cell death. GRPs help the cell deal 
with the endoplasmic reticulum’s misfolded proteins. 
GRP78 decreased cell death in renal epithelial cells [27].
Expression of GRP78 was downregulated in Vero cells 
treated with higher doses of cyclophosphamide, thus los-
ing its protective effect against cell death. GRP78, being 

a chaperone, is essential for the cell with endoplasmic 
reticulum stress to properly fold misfolded proteins. A 
decrease in GRP78 expression in Vero cells treated with 
higher doses of cyclophosphamide could contribute to 
increased death. Protein disulfide isomerase is located in 
the endoplasmic reticulum, which catalyzes the forma-
tion, breakage, and rearrangement of disulfide linkage, 
thereby playing an important role in the folding of pro-
teins [28]. Protein disulfide isomerase was downregu-
lated in Vero cells upon exposure to cyclophosphamide. 
Thus, the protective effect of GRP78 and PDI are lost in 
Vero cells treated with a high dose of cyclophosphamide, 
resulting in increased cell death. In summary, cyclophos-
phamide causes damage to urothelium probably by al-
tering the endoplasmic stress-related proteins. Our study 
suggests that endoplasmic reticulum stress-related pro-
teins could partly be responsible for causing damage to 
the urothelium. Our study does not establish a causative 

Figure 6. Expression of protein disulfide isomerase (PDI) protein in cyclophosphamide treated Vero cells
 A) Western blotting image of PDI, with beta-actin used as a loading control, and B) Fold change in expression of PDI as 
compared to control and the difference in expression of PDI between the groups were analyzed by the Kruskal-Wallis test 
(P=0.0547). Quantification value expressed as median and interquartile range.

15 

statistical significance (P = 0.0547). Exposure of cyclophosphamide to Vero cells 281 

downregulated the expression of cell-protective PDI, whose natural role is to improve the 282 

viability of cells. 283 

 284 

 285 

 286 

A. Western Blot Image for PDI Protein in Vero Cells Treated With 287 

Cyclophosphamide 288 

 289 

 290 

B. Quantification of PDI Bands in Western Blot 291 

Figure 6: Expression of Protein Disulfide Isomerase (PDI) Protein in Cyclophosphamide 292 

Treated Vero Cells 293 

15 

statistical significance (P = 0.0547). Exposure of cyclophosphamide to Vero cells 281 

downregulated the expression of cell-protective PDI, whose natural role is to improve the 282 

viability of cells. 283 

 284 

 285 

 286 

A. Western Blot Image for PDI Protein in Vero Cells Treated With 287 

Cyclophosphamide 288 

 289 

 290 

B. Quantification of PDI Bands in Western Blot 291 

Figure 6: Expression of Protein Disulfide Isomerase (PDI) Protein in Cyclophosphamide 292 

Treated Vero Cells 293 

A. Western blot image for PDI protein in Vero cells treated with cyclophosphamide

B. Quantification of PDI bands in western blot

Hemalatha R, et al. Cyclophosphamide’s Effect on Endoplasmic Reticulum Stress-Related Proteins Expression in Vero Cells. PBR. 2023; 9(2):153-162

http://pbr.mazums.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en
http://pbr.mazums.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en


161

 June 2023. Volume 9. Number 2

role for endoplasmic reticulum stress-related proteins in 
cyclophosphamide-induced hemorrhagic cystitis. Fur-
ther studies are warranted to explore the clinical utility 
of endoplasmic reticulum stress inhibitors in mitigating 
the side effects of cyclophosphamide intake.

5. Conclusion

Endoplasmic reticulum stress-related proteins are al-
tered in Vero cells treated with cyclophosphamide. Up-
regulation of GADD 153 in cyclophosphamide-treated 
Vero cells could cause cell death in Vero cells. Proteins 
protecting against endoplasmic stress-related death and 
misfolding, such as GRP 78 and protein disulfide isom-
erase, are downregulated in Vero cells treated with cy-
clophosphamide.
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