

Original Article Analysis of Adverse Events With Janus Kinase Inhibitors Reported to Spontaneous Reporting System

Hideyuki Tanaka^{1, 2}, Mika Maezawa¹, Satoshi Nakao^{1, 3} , Koumi Miyasaka¹, Sakiko Hirofuji¹, Moe Yamashita¹, Kensuke Matsui¹, Nanaka Ichihara¹, Yuka Nokura¹, Mari Iwata^{1, 4}, Mayumi Kitamura⁵, Megumi Horibe⁵, Hirofumi Tamaki⁶, Kazuhiro Iguchi⁶, Mitsuhiro Nakamura^{1*}

1. Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan.

2. Department of Pharmacy, Dispensing Pharmacy Department, Chubuyakuhin Co., Ltd, Gifu, Japan.

3. Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan.

4. Department of Pharmacy, Yanaizu Pharmacy, Gifu, Japan.

5. Department of Nursing, School of Health Science, Asahi University, Gifu, Japan.

6. Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, Japan.

Corresponding Author:
Mitsuhiro Nakamura, PhD.
Address: Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan.
Phone: +81 (58) 230-8100
E-mail: mnakamura@gifu-pu.ac.jp

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-By-NC: https:// creativecommons.org/licenses/bync4.0legalcode.en), which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Article info:

Received: 22 Feb 2024 Accepted: 26 Apr 2024

Keywords:

Pharmacovigilance, Tofacitinib, Janus kinase (JAK), Pneumonia, Herpes zoster (HZ)

ABSTRACT

Background: Janus kinase (JAK) inhibitors are recently launched treatments with a new mechanism of action, so their safety needs to be verified through long-term usage.

Objectives: This study aimed to determine the clinical characteristics of JAK inhibitor-related adverse events (AEs) in a real-world setting, using data from the Japanese adverse drug event report (JADER) database.

Methods: AEs are defined using the preferred terms from the dictionary of medical terms for regulatory agencies and include pneumonia, herpes zoster (HZ), hematopoietic erythropenia, hematopoietic leukopenia, hematopoietic thrombocytopenia, liver disorder, renal impairment, interstitial lung disease (ILD), cardiac failure, embolic and thrombotic events, gastrointestinal perforation, and hyperglycemia. Adjusted reported odds ratios (ROR) are used to assess disproportionality in the pharmacovigilance data, and time-to-onset analysis is performed using Weibull shape parameters.

Results: The JADER database contained 823662 reports published between April 2004 and March 2023. Pneumonia and HZ are associated with all JAK inhibitors except filgotinib. Adjusted RORs for pneumonia with peficitinib, tofacitinib, baricitinib, ruxolitinib, filgotinib, and upadacitinib are 4.4 (95% CI, 3.36%, 5.75%), 6.93 (95% CI, 6.18%, 7.77%), 6.51 (95% CI, 5.52%, 7.67%), 3.3 (95% CI, 2.76%, 3.95%), 4.39 (95% CI, 2.55%, 7.58%), and 6.11 (95% CI, 4.53%, 8.23%), respectively. Adjusted RORs for HZ with peficitinib, tofacitinib, baricitinib, ruxolitinib, and upadacitinib are 8.94 (95% CI, 5.69%, 14.05%), 31.82 (95% CI, 27.58%, 36.71%), 34.96 (95% CI, 28.92%, 42.26%), 5.24 (95% CI, 3.57%, 7.7%), and 33.19 (95% CI, 23.81%, 46.27%), respectively. The median time-to-onset of pneumonia and HZ with JAK inhibitor usage ranged from 2 to 6 months and 4 to 7 months, respectively.

Citation Tanaka H, Maezawa M, Nakao S, Miyasaka K, Hirofuji S Yamashita M, et al. Analysis of Adverse Events With Janus Kinase Inhibitors Reported to Spontaneous Reporting System. Pharmaceutical and Biomedical Research. 2024; 10(3):203-228. http://dx.doi.org/10.32598/PBR.10.3.1207.3

doi http://dx.doi.org/10.32598/PBR.10.3.1207.3

Conclusion: We demonstrated the potential risks of JAK inhibitor use with real-world data. The present analysis shows that patients receiving peficitinib, tofacitinib, baricitinib, ruxolitinib, filgotinib, or upadacitinib should be closely monitored for AEs. The most common AEs associated with JAK inhibitors were pneumonia and HZ.

Introduction

anus kinase (JAK) inhibitors act on cytokine signaling pathways involved in inflammatory diseases and immune system abnormalities [1-4]. JAKs are essential for many cytokine families, and biological therapies targeting in-

flammatory cytokines have critically changed the treatment of rheumatoid arthritis (RA) and other autoimmune diseases. RA, for instance, is associated with the overproduction of interleukin (IL)-6, IL-12, IL-15, IL-23, granulocyte macrophage-colony stimulating factor, and interferons [4].

Four members of the JAK family, JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2), are involved in different cytokine signaling pathways. JAK1, JAK2, and TYK2 are ubiquitously expressed, while expression of JAK3 is mainly restricted to cells of hematopoietic origin [2]. JAK1 is primarily involved in inflammatory and innate immune responses. Inhibition of JAK1 suppresses IL-6 signaling, which is central to inflammatory disease [1]. JAK2 is essential for erythropoiesis, myelopoiesis, and platelet production. JAK3 is vital for lymphocyte proliferation and homeostasis [2-4]. The IL-2 family of cytokines (IL-2, -4, -7, -9, -15, and -21) signal through JAK3-bound receptors [3]. IL-2 is a cytokine secreted by antigen stimulation of T cell receptors that drives T cell growth, augments natural killer (NK) cytolytic activity, induces the differentiation of regulatory T cells, and mediates activationinduced cell death [5-7]. The function of IL-15 is the maintenance of NK cells and CD8+CD44h memory T cells to provide a long-term immune response to pathogens [7]. TYK2 is associated with antiviral responses [1-4]. Therefore, differences in JAK inhibitor selectivity for cytokine signaling via distinct JAK pairs may provide a mechanistic rationale for reported differences in safety profiles (Figure 1) [1].

The main action of JAK inhibitors is suppression of inflammation and immune responses [8-12]. Drugs that selectively inhibit JAK1 and JAK3 treat autoimmune diseases such as RA, psoriatic arthritis, ulcerative colitis (UC), and Crohn disease [8-12]. JAK2 inhibitors, however, are used in the treatment of myeloid tumors such as myelofibrosis (MF) and primary myeloproliferative disorders [13, 14].

Tofacitinib is a first-generation selective oral JAK1 and JAK3 inhibitor with low activity against JAK2 and TYK2 [15]. Baricitinib is a JAK1 or JAK2 inhibitor with moderate activity against JYK2 and minimal activity against JAK3 [15]. Upadacitinib and filgotinib increase efficacy by selectively inhibiting JAK1, which is involved in the transmission of inflammatory cytokines, and reduce the risk of hematological adverse events (AEs) by preventing JAK2 inhibition [16-18]. Peficitinib inhibits the enzymatic activity of JAK1, JAK2, JAK3, and TYK2 and is expected to have moderate selectivity for JAK3 inhibition and relatively mild inhibition of JAK2, which may have less impact on red blood cells and platelets [19]. Ruxolitinib, a JAK1 and JAK2 inhibitor, is used for the treatment of polycythemia vera (PV), which is known to be associated with inappropriate JAK2 activation and intermediate- and high-risk primary MF [13, 14].

The common AEs of JAK inhibitor usage include infection, anemia, lymphopenia, liver dysfunction, renal dysfunction, and tumor exacerbation. Upper respiratory tract infections, pneumonia, bronchitis, and gastroenteritis are higher in patients treated with JAK inhibitors than in the general population [20]. Opportunistic infections such as herpes zoster (HZ), tuberculosis, and candidiasis have also been reported. Mainly, HZ is widely known as a high-frequency AE associated with JAK inhibitors, with a high incidence in Japan and other Asian countries [21]. The use of JAK inhibitors may increase the risk of thrombosis, including deep vein thrombosis (DVT), pulmonary embolism (PE), cardiovascular events, and malignancy [22, 23]. Safety data have been critical to the research and development of JAK inhibitors in recent years [23].

Understanding the incidence profile of AEs in patients with complex backgrounds and drug treatments is essential in clinical practice. The spontaneous reporting system (SRS) is a valuable tool for pharmacovigilance, reflecting the realities of clinical practice. In Japan, post-marketing AEs are managed by the Pharmaceuticals and Medical Devices Agency (PMDA), a regulatory authority. The Japanese adverse drug event report (JADER) database is an SRS that compiles data voluntarily submitted by healthcare professionals, pharmaceutical companies, and patients. The incidence profile for AEs associated with JAK inhibitors is unclear, and there are relatively fewer reports affecting the onset time of AEs

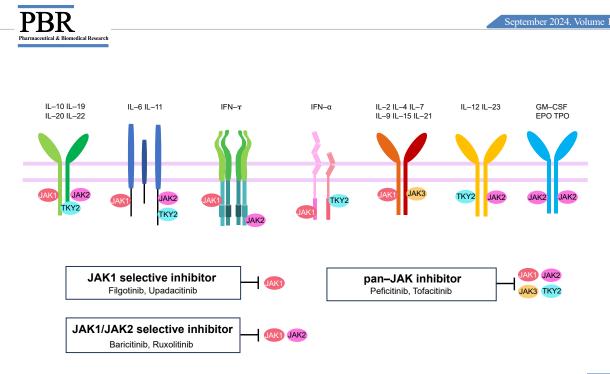


Figure 1. Main cytokine receptors and mechanism of action of inhibitors

PBR

caused by JAK inhibitors in actual clinical practice. This study evaluated the incidence profiles of AEs associated with JAK inhibitors by analyzing data from the JADER database.

Materials and Methods

Data source

Relevant information from the JADER database, from April 2004 to March 2023, was downloaded from the PMDA website [24]. The data from the JADER database was fully anonymized by the regulatory authority (PMDA) before we accessed it. The JADER database comprises four tables: DEMO table, including patient's demographic information like gender, age, weight, etc.; DRUG table, including drug information like drug name, causality of drug, etc.; REAC table, including adverse drug reaction, name, outcome, etc.; and HIST table, including medical history like primary diseases, etc. The DEMO table was linked to the DRUG, REAC, and HIST tables using ID numbers. We integrated the relational databases of the four tables from the JADER dataset using MariaDB version. 10.5 [25]. In the DRUG table, each drug was categorized into three codes according to its association with an AE: Suspected drug, concomitant drug, and interacting drug. We only analyzed cases that were categorized as suspected drugs.

Definition of AEs

The definition of AEs used in the JADER database is based on MedDRA (medical dictionary for regulatory activities) version 23.1 [26] (Table 1). Standardized MedDRA queries (SMQs) are widely used to analyze SRS reports [26]. SMQs, built by the Maintenance and Support Services Organization, are groups of preferred terms (PTs) categorized according to the level related to a defined medical condition. The grouping of SMOs allows for valuable data retrieval and the presentation of relevant individual case safety reports. The PTs retrieved with the respective SMQs were as follows: "Pneumonia" with 24 PTs for infective pneumonia (SMQ code: 20000231); "interstitial lung disease (ILD)" with 3 PTs for ILD (SMQ code: 20000042); "herpes zoster" with 11 PTs for ocular infections (SMQ code: 20000183); infective pneumonia (SMQ code: 20000231); opportunistic infections (SMQ code: 20000235); "embolic and thrombotic events" with 26 PTs for embolic and thrombotic events, arterial (SMQ code: 20000082); embolic and thrombotic events, vessel type unspecified and mixed arterial and venous (SMQ code: 20000083); embolic and thrombotic events, venous (SMQ code: 20000084); "gastrointestinal perforation (GP)" with 11 PTs for GP (SMQ code: 20000107); "liver disorder" with 14 PTs for liver related investigations, signs and symptoms (SMQ code: 20000008); cholestasis and jaundice of hepatic origin (SMQ code: 20000009); hepatic failure, fibrosis and cirrhosis, and other liver damage-related conditions (SMQ code: 20000013); "renal impairment" with 12 PTs for acute renal failure (SMQ code: 20000003); drug reaction with eosinophilia and systemic symptoms syndrome (SMQ code: 20000225); "cardiac failure" with 11 PTs for cardiac failure (SMQ code: 20000004); "hematopoietic erythropenia" with 8 PTs for hematopoietic erythropenia (SMQ code: 20000029); "hematopoietic leukopenia" with 11 PTs for hematopoietic leukopenia (SMQ code: 20000030); "hematopoietic thrombocytopenia" with 2 PTs for hematopoietic thrombocvtopenia (SMQ code: 20000031); and "hyperglycemia" with 6 PTs for hyperglycemia/new onset diabetes mellitus (SMQ code: 20000041) (Table 1).

		· ·								
Categories	PT ^a Name	PT Code	Peficitinib	Tofacitinib	Baricitinib	Ruxolitinib	Filgotinib	Upadacitinib		
	Pneumonia	10035664	50	222	125	98	9	22		
	Pneumonia bacterial	10060946	9	68	28	15	2	7		
	Pneumocystis jirovecii pneu- monia	10073755	2	66	18	11	3	24		
	Pneumonia cytomegaloviral	10035676	0	10	2	3	1	2		
	Bronchopulmonary aspergillosis	10006473	0	8	9	12	0	1		
	Pneumonia cryptococcal	10067565	0	5	0	7	0	0		
	Pneumonia pneumococcal	10035728	1	5	1	2	0	0		
	Pneumonia influenzal	10035714	0	3	2	1	0	0		
	Pneumonia legionella	10035718	0	3	2	0	0	0		
	Pneumonia fungal	10061354	0	2	0	2	1	1		
	Pneumonia pseudomonal	10035731	0	2	1	0	0	1		
D	Pneumonia mycoplasmal	10035724	2	2	0	1	0	0		
Pneumonia	Pneumonia viral	10035737	0	2	2	1	0	1		
	Pneumonia haemophilus	10035702	0	1	0	0	0	0		
	Pneumonia herpes viral	10035703	0	1	0	0	0	0		
	Pneumonia klebsiella	10035717	0	1	0	0	0	0		
	Pneumonia chlamydial	10035673	0	1	0	0	0	0		
	Mycoplasma infection	10061300	0	1	0	0	0	0		
	Pneumonia streptococcal	10035735	0	1	0	1	0	0		
	Pneumonia escherichia	10035699	1	0	0	0	0	0		
	Pneumonia staphylococcal	10035734	1	0	1	1	0	0		
	Pneumonia necrotising	10055672	0	0	1	0	0	0		
	Pneumococcal infection	10061353	0	0	1	0	0	0		
	Pneumonia moraxella	10035723	0	0	1	0	0	0		
	ILD	10022611	20	120	38	25	10	23		
ILD	Organising pneumonia	10067472	1	10	6	4	0	3		
	Pulmonary fibrosis	10037383	0	3	0	0	0	0		
	Herpes zoster	10019974	21	252	138	27	1	40		
	Herpes zoster oticus	10063491	0	5	3	0	0	1		
	Varicella zoster pneumonia	10074254	0	3	0	0	0	0		
Herpes zoster	Varicella zoster virus infection	10075611	0	3	0	1	0	0		
	Herpes zoster meningitis	10074259	0	3	1	0	1	1		
	Ophthalmic HZ	10030865	0	2	3	0	0	0		
200101	Herpes zoster meningoencepha- litis	10074248	0	2	0	0	0	0		
	Herpes zoster infection neuro- logical	10061208	0	1	0	0	0	0		
	Herpes zoster meningomyelitis	10074251	0	1	0	0	0	0		
	Genital HZ	10072210	0	1	0	0	0	0		
	Disseminated varicella zoster virus infection	10084396	0	0	0	0	0	1		

Table 1. PTs associated with JAK inhibitors related AEs in MedDRA and the number of reports

Categories	PT ^a Name	PT Code	Peficitinib	Tofacitinib	Baricitinib	Ruxolitinib	Filgotinib	Upadacitinib
	Deep vein thrombosis	10051055	5	22	17	2	2	5
	Disseminated intravascular coagulation	10013442	1	17	3	1	0	1
	Cerebral infarction	10008118	4	15	13	10	2	1
	Pulmonary embolism	10037377	2	10	12	6	0	5
	Embolism venous	10014522	0	6	0	0	0	1
	Myocardial infarction	10028596	5	5	4	1	1	1
	Acute myocardial infarction	10000891	0	4	3	2	2	1
	Thrombosis	10043607	0	3	4	2	0	0
	Venous thrombosis limb	10061408	0	3	1	0	0	1
	Thrombotic thrombocytopenic purpura	10043648	0	3	0	0	0	0
	Thrombophlebitis	10043570	0	2	0	0	0	0
	Embolism	10061169	0	1	0	1	0	0
Em- bolic and	Cerebral thrombosis	10008132	0	1	1	0	1	1
thrombotic events	Pulmonary artery thrombosis	10037340	0	1	1	1	0	0
erents	Lacunar infarction	10051078	2	1	1	0	0	0
	Brain stem infarction	10006147	0	1	3	0	0	0
	Peripheral embolism	10061340	0	1	0	0	0	0
	Aortic thrombosis	10002910	0	1	0	1	0	0
	Embolic cerebral infarction	10060839	1	0	0	0	0	0
	Haemorrhagic cerebral infarction	10019005	1	0	0	0	1	1
	Cerebellar infarction	10008034	1	0	3	0	0	0
	Retinal vein occlusion	10038907	0	0	2	1	0	0
	Thrombotic cerebral infarction	10067347	0	0	2	0	1	1
	Pulmonary infarction	10037410	0	0	1	0	0	0
	Peripheral arterial occlusive disease	10062585	0	0	1	0	0	0
	Cardiac ventricular thrombosis	10053994	0	0	1	0	0	0
	Cardiac failure	10007554	9	11	3	39	1	1
	Cardiac failure congestive	10007559	1	6	3	10	0	0
	Oedema peripheral	10030124	0	6	1	3	0	0
	Cardiac failure acute	10007556	3	5	1	4	0	0
	Peripheral swelling	10048959	0	1	0	0	0	0
Cardiac failure	Cardiac dysfunction	10079751	0	1	0	0	0	0
. since c	Pulmonary oedema	10037423	0	1	0	2	0	0
	Brain natriuretic peptide increased	10053405	0	1	0	0	0	0
	Oedema	10030095	0	1	0	3	0	0
	Cardiac failure chronic	10007558	2	1	0	3	0	0
	Cor pulmonale	10010968	1	0	0	0	0	0

Categories	PT ^a Name	PT Code	Peficitinib	Tofacitinib	Baricitinib	Ruxolitinib	Filgotinib	Upadacitinik
	Large intestine perforation	10023804	2	6	2	1	0	0
	Duodenal perforation	10013832	0	3	0	0	0	0
	Intestinal perforation	10022694	0	3	0	0	0	0
	Gastrointestinal perforation	10018001	1	3	0	1	1	1
	Rectal perforation	10038073	1	2	0	0	0	0
Gastroin- testinal	Diverticular perforation	10061820	0	2	3	0	0	1
perforation	Gastric ulcer perforation	10017835	0	1	0	0	0	0
	Small intestinal perforation	10041103	0	1	0	1	0	0
	Gastric perforation	10017815	1	0	0	1	0	0
	Enterovesical fistula	10062570	0	0	1	0	0	0
	Oesophageal rupture	10052211	0	0	0	0	2	2
	Hepatic function abnormal	10019670	2	23	6	35	1	1
	Liver disorder	10024670	1	13	2	17	2	1
	Aspartate aminotransferase	10003481	0	10	0	12	0	0
	increased Gamma-glutamyltransferase	10017693	1	8	0	11	0	0
	increased Alanine aminotransferase	10001551	0	7	1	8	0	0
	increased Transaminases increased	10054889	0	3	0	1	0	0
	Liver function test increased	10077692	0	2	4	0	0	0
Liver disorder	Blood alkaline phosphatase increased	10059570	0	2	0	14	0	0
	Blood cholinesterase decreased	10005430	0	1	0	0	0	0
	Blood bilirubin increased	10005364	0	1	0	4	0	0
	Liver function test abnormal	10024690	1	1	0	0	0	0
	Drug-induced liver injury	10072268	1	1	1	6	0	1
	Hepatic enzyme increased	10060795	0	1	2	5	0	0
	Jaundice cholestatic	10023129	0	0	1	0	0	0
	Renal impairment	10062237	38	29	8	45	10	10
	Acute kidney injury	10069339	2	7	4	8	0	2
	Renal failure	10038435	1	4	0	6	1	1
	Protein urine present	10053123	0	4	0	1	0	0
	Blood urea increased	10005851	0	3	0	1	0	0
Renal im- pairment	Blood creatinine increased	10005483	0	2	0	3	0	0
	Renal disorder	10038428	0	2	0	5	0	0
	Urine output decreased	10059895	0	1	0	0	0	0
	Creatinine renal clearance decreased	10011372	0	1	0	0	0	0
	Tubulointerstitial nephritis	10048302	2	1	0	1	0	0
	Glomerular filtration rate decreased	10018358	0	0	3	0	0	0
	Nephritis	10029117	0	0	0	0	1	1

Categories	PT ^a Name	PT Code	Peficitinib	Tofacitinib	Baricitinib	Ruxolitinib	Filgotinib	Upadacitinib
	Anaemia	10002034	3	26	26	374	2	4
	Haemoglobin decreased	10018884	0	19	1	131	1	1
	Red blood cell count decreased	10038153	0	11	0	5	0	0
Hemato- poietic	Haematocrit decreased	10018838	0	8	0	1	0	0
erythrope- nia	Anaemia macrocytic	10002064	0	4	0	0	0	0
	Aplasia pure red cell	10002965	0	2	0	1	0	0
	Microcytic anaemia	10027538	0	1	0	0	0	0
	Aplastic anaemia	10002967	0	0	1	0	0	0
	Lymphocyte count decreased	10025256	3	28	4	32	0	0
	White blood cell count decreased	10047942	0	13	5	49	1	1
	Febrile neutropenia	10016288	0	9	0	6	0	0
	Neutrophil count decreased	10029366	0	7	6	29	0	3
	Leukopenia	10024384	1	4	18	9	0	0
Hemato- poietic leukopenia	Lymphocyte percentage de- creased	10052231	0	4	0	0	0	0
europenia	Lymphopenia	10025327	0	4	0	7	0	0
	Basophil percentage decreased	10052219	0	2	0	0	0	0
	Neutropenia	10029354	3	2	0	9	1	1
	Eosinophil percentage decreased	10052221	0	1	0	0	0	0
	Granulocyte count decreased	10018681	0	0	1	0	0	0
Hemato- poietic	Platelet count decreased	10035528	0	11	3	252	0	0
thrombo- cytopenia	Thrombocytopenia	10043554	2	6	0	42	0	0
	Blood glucose increased	10005557	0	5	0	1	0	0
Hypergly-	Diabetes mellitus	10012601	1	3	0	1	0	0
	Hyperglycaemic hyperosmolar nonketotic syndrome	10063554	0	2	0	0	0	0
cemia	Glucose urine present	10018478	0	1	0	0	0	0
	Diabetes mellitus inadequate control	10012607	0	1	0	0	0	0
	Type 2 diabetes mellitus	10067585	0	0	0	1	0	0

^aPreferred terms by the MedDRA version 23.1.

Drug selection

Six oral JAK inhibitors approved in Japan as of 2022 were examined. The JAK inhibitors analyzed in this study, along with the indications in parenthesis, are ruxolitinib (MF, PV), tofacitinib (RA, UC), baricitinib

(RA, atopic dermatitis, pneumonia due to SARS-CoV-2, alopecia areata), upadacitinib (RA, psoriatic arthritis, ankylosing spondylitis, atopic dermatitis), filgotinib (RA, UC), and peficitinib (RA, UC).

PBR

Signal detection

To detect AEs associated with JAK inhibitors, we calculated the crude reporting odds ratio (ROR) using a 2-by-2 contingency table. Using multiple-logistic regression analysis, we also calculated the adjusted RORs to control for the covariates. We considered a signal detected if the estimated ROR and the lower limit of the corresponding 95% confidence interval (CI) was greater than one and if at least two cases were reported [27]. The reports were stratified by reporting age \leq 59 and \geq 60 years and sex (male and female). The following multiple logistic regression model (Equation 1) was used for the analysis:

1. log (odds)= $\beta_0 + \beta_1 Y + \beta_2 S + \beta_3 A + \beta_4 D$

where, Y is the reporting year, S denotes sex, A is the stratified age group, and D is the JAK inhibitor. Data analyses were performed using the statsmodels version 0.13.2 in Python (version 3.8.13) [28].

Time-to-onset analysis

Recently, time-to-onset analysis has been proposed to detect AE signals in SRSs. It has been reported that the incidence of AEs after prescription depends on causative factors and often changes over time. In contrast, AEs not drug-related occur constantly as a background. Therefore, changes in the incidence of AEs over time may indicate a relationship between a drug and the AE [29, 30]. The specific parameter α of the Weibull probability density function determines the scale of the function, and the shape parameter β determines the shape of the function. The shape parameter β of the Weibull distribution was used to display the hazard without a reference population as follows. If the 95% CI of β included 1, the hazard was estimated to be constant (random failure type). If the lower limit of the 95% CI of β was greater than 1, the hazard was considered to increase over time (wearout failure type). Finally, if the upper limit of the 95% CI of β was less than 1, the hazard was considered to decrease over time (initial failure type). Reports in which the time of occurrence of the AE and the time of prescription initiation were incomplete were excluded from the analysis. We calculated the period from the date of the dose to the date of the first onset of the AE and fitted it to a Weibull function using the parametric SurPyval model in SurPyval (version 0.10.1.0) in Python (version 3.8.13) [31].

Results

A total of 823662 reports were submitted to the JADER database during the study period. Also, 5524 cases were reported with JAK inhibitors as suspected drugs, with the following reporting rates: Peficitinib 8.6% (n=476), tofacitinib 39.2% (n=2164), baricitinib 19.1% (n=1054), ruxolitinib 25.8% (n=1427), filgotinib 2.3% (n=127), and upadacitinib 5.7% (n=314). Women reported 67.6% use of the JAK inhibitors, excluding ruxolitinib, whereas men reported 57.6% use of ruxolitinib. The reporting ratios of AEs in patients in their 80s, 70s, 60s, and 50s who were administered the JAK inhibitors, except for ruxolitinib, were 13.0%, 38.1%, 21.9%, and 7.6%, respectively. Among the reports on ruxolitinib, the percentages of patients with MF and PV were 76.9% and 20.6%, respectively. Of the reports on peficitinib, tofacitinib, baricitinib, filgotinib, and upadacitinib, the percentages of patients with RA history were 98.5%, 83.4%, 85.8%, 81.8%, and 89.7%, respectively.

ROR analysis

The crude and adjusted RORs for the categorized AEs of JAK inhibitors are summarized in Table 2. The coefficients of the confounding factors adjusted by multiple logistic regression are shown in Table 3. Adjusted RORs for pneumonia with peficitinib, tofacitinib, baricitinib, ruxolitinib, filgotinib, and upadacitinib were 4.40 (95% CI, 3.36%, 5.75%), 6.93 (95% CI, 6.18%, 7.77%), 6.51 (95% CI, 5.52%, 7.67%), 3.30 (95% CI, 2.76%, 3.95%), 4.39 (95% CI, 2.55%, 7.58%), and 6.11 (95% CI, 4.53%, 8.23%). The adjusted RORs for HZ with peficitinib, tofacitinib, baricitinib, ruxolitinib, and upadacitinib were 8.94 (95% CI, 5.69%, 14.05%), 31.82 (95% CI, 27.58%, 36.71%), 34.96 (95% CI, 28.92%, 42.26%), 5.24 (95% CI, 3.57%, 7.7%), and 33.19 (95% CI, 23.81%, 46.27%), respectively. Adjusted RORs with ruxolitinib for hematopoietic erythropenia, hematopoietic leukopenia, hematopoietic thrombocytopenia, liver disorder, and cardiac failure were 23.51 (95% CI: 20.92%, 26.42%), 1.57 (95% CI: 1.29%, 1.9%), 8.36 (95% CI, 7.3%, 9.57%), 1.71 (95% CI, 1.39%, 2.11%), and 1.85 (95% CI, 1.41%, 2.42%), respectively.

Time-to-onset analysis

For the time-to-onset analysis, we used only combinations for which we had complete information on the drug start date and AE onset date. Boxplots were created for each JAK inhibitor with respect to the time of onset of each AE (Figure 2). We summarize the median number of days, from the start of treatment to disease

AE Category Drog Total care Create Role (95% Q) Adjusted Role (95% Q) Pefectrinio 22677 62 4.68 (4.08-5.37) 4.4 (3.36-5.7) Presumonia Barictinio 22677 178 6.99 (6.67.4) 6.93 (6.187.77) Barictinio 22677 178 6.7 (6.177.28) 6.51 (5.52.767) Baudininio 22677 136 3.7 (3.37.4.05) 3.3 (2.76.3.95) Updactinio 22677 53 6.45 (5.55.7.51) 6.11 (4.53.8.27) Prepresention 3099 20 10.78 (6.57.4.53) 3.8.2 (75.85.6.7) Barictinio 3099 20 10.78 (6.57.4.53) 3.8.2 (75.85.6.7) Barictinio 3099 20 10.78 (6.57.4.53) 3.8.2 (75.85.6.7) Barictinio 3099 20 5.27 (4.33.64) 5.24 (6.57.7) Barictinio 3099 21 c c Updactinio 3099 22 5.27 (4.33.64) 5.24 (6.57.7) Baucininio 3099 23 0.25 (0.14.0.43) 5.24 (6.57.7)	AE Catagory	Drug	No			Adjusted ROR (95% CI)	
Toractimic 2677 6.9 (6.7.41) 6.93 (6.18-7.7) Baricitinio 22677 178 6.7 (6.17.28) 6.51 (5.52.7 c) Bucolitinio 22677 136 3.7 (3.37.405) 3.3 (2.76.395) Igigotinio 22677 136 4.62 (3.56.09) 4.39 (2.57.58) Igigotinio 22677 5.3 6.65 (5.57.51) 6.11 (4.53.42.29) Performino 3099 2.0 10.78 (8.57.13.56) 8.84 (5.69.14.05) Baricitinio 3099 2.0 10.78 (8.57.31.56) 8.84 (5.69.14.05) Rusolitinio 3099 2.0 10.78 (8.57.13.56) 8.94 (5.29.42.25) Baricitinio 3099 2.0 3.07 (8.13.43.62) 3.12 (27.58.67.11) Herpes zoter Filgotinio 3099 2.0 3.97 (8.13.43.62) 3.13 (2.07.61.34.62) Herpes zoter Filgotinio 3099 1 6 .2 2.43 (3.77.7) Herpes zoter Filgotinio 3089 12 1.01 (0.91.31) 1.01 (0.91.21) Herepes zoter Filgotinio	AE Category	Drug	Total case	Case		Adjusted ROR (95% CI)	
Baricitation 22677 178 6.7 (6.17.28) 6.51 (552.7.67) Rusolitinib 22677 136 3.7 (3.374.05) 3.3 (2.76.355) Fligotinib 22677 15 4.62 (3.56.09) 4.39 (2.55.7.53) Upadactinib 22677 53 6.65 (5.57.53) 6.11 (4.53.42.2) Perficitinib 3099 20 0.78 (8.57.43.54) 8.45 (2.85.47.6) Baricitinib 3099 20 3.452 (2.52.7.67.1) 3.12 (2.75.83.67.1) Baricitinib 3099 20 3.452 (2.52.47.7.2) 3.84 (6.28.42.42.6) Baricitinib 3099 10 C c Herpeszoster Fligetinib 309 1 C c Harditinib 3099 1 C c c Herpeszoster Fligetinib 18823 3 0.25 (0.40.45) 0.27 (0.90.85) Harditinib 18823 12 0.26 (0.81.41.61) 0.60 (0.81.41) 0.60 (0.81.41) Herentringenia Baricitinib 18823 12 0.20		Peficitinib	23677	62	4.68 (4.08-5.37)	4.4 (3.36-5.75)	
Preumonia Rusolitinib 23677 136 3.7 (3.374.05) 3.3 (2.76.39) Filgatinib 23677 15 4.62 (3.56.09) 4.39 (2.55.753) Upadacitnib 23677 53 6.45 (5.57.53) 6.11 (4.53.8.23) Ipadacitnib 3099 20 0.78 (8.57.43.64) 6.82 (2.52.43.64) Baricitnib 3099 20 3.49 (2.62.13.75.1) 3.82 (2.52.84.67) Baricitnib 3099 16 9.79 (6.13.43.62) 2.46 (2.32.74.7) Herpes coster Filgotnib 3099 10 C C Ipadactitnib 3099 12 3.834 (32.44.62) 3.19 (2.38.46.7) Herpes coster Filgotnib 3823 3 0.25 (0.14.0.45) 0.27 (0.09.0.8) Herpes coster Filgotnib 18823 2 0.02 (0.89.1.3) 1.18 (0.81.7) Herpes coster Filgotnib 18823 2 0.64 (0.41.10) 0.70 (0.30.37.7) Herpes coster Filgotnib 1680 12 0.46 (0.40.60.5) 0.52 (0.41.68.5)		Tofacitinib	23677	371	6.99 (6.6-7.41)	6.93 (6.18-7.77)	
Ruseitnib236771363.7 (3.37.46)3.3 (2.76.39)Figerhib23677154.62 (3.5.60)4.39 (2.55.7.51)Upadactinb23677536.45 (5.57.51)6.11 (4.53.4.23)Peficitnib3099200.78 (5.57.51)0.162 (2.58.36.71)Barcitnib0099204.92 (3.25.37.51)0.162 (2.58.36.71)Barcitnib0099163.97 (3.13.43.62)3.49 (2.52.42.22)Barcitnib0099163.97 (3.13.43.62)3.49 (2.52.42.27)Figotinib009910ccUpadactinib009910ccUpadactinib1882330.25 (0.14.43)0.31 (0.3.14.46.7)Forcitnib1882330.25 (0.14.43)0.67 (0.9.08)Tofactinib1882330.26 (0.3.1.41)1.18 (0.8.1.41)Ruseitnib18823271.08 (0.89.1.31)1.18 (0.8.1.7)Periotinib18823290.69 (0.3.1.41)0.73 (0.3.1.7)Ruseitnib18823290.69 (0.3.1.43)0.27 (0.13.0.57)Periotinib1882350.64 (0.41.01)0.73 (0.3.1.7)Periotinib18823230.39 (0.32.0.48)0.52 (0.41.08)Periotinib16098120.48 (0.42.55)0.52 (0.41.08)Periotinib16098120.43 (0.42.55)0.52 (0.41.08)Periotinib16098120.21 (0.12.03)0.22 (0.12.03)Periotinib16098120.21 (0.12.03)0.22 (0.12.03)<	Dagunagia	Baricitinib	23677	178	6.7 (6.17-7.28)	6.51 (5.52-7.67)	
upadacitinis 23677 53 6.45 (557.51) 6.11 ($4.53.423$) $Pericitinis$ 3099 20 10.78 ($8.57.51$) 8.94 ($5.69.14.05$) $Pericitinis$ 3099 20 10.78 ($8.57.51$) 31.82 ($27.58.36.71$) $Pericitinis$ 3099 219 34.92 ($32.51.37.51$) 31.82 ($27.58.36.71$) $Pericitinis$ 3099 219 527 ($4.33.64$) 524 ($3.57.77$) $Pericitinis$ 3099 16 39.7 ($36.13.43.62$) 34.96 ($28.24.25.61$) $Pericitinis$ 3099 16 28.94 ($32.94.46.03$) 33.19 ($22.81.46.27$) $Pericitinis$ 18823 3 025 (114.045) 0.27 ($0.90.485$) $Pericitinis$ 18823 52 102 ($0.89.1.31$) 1.18 ($0.81.14$) $Pericitinis$ 18823 27 108 ($0.89.1.31$) 1.18 ($0.81.77$) $Pericitinis$ 18823 27 108 ($0.89.1.31$) 1.18 ($0.81.79$) $Pericitinis$ 18823 27 108 ($0.89.1.31$) 1.18 ($0.81.79$) $Pericitinis$ 18823 27 108 ($0.89.1.31$) 1.18 ($0.81.79$) $Pericitinis$ 18823 27 0.96 ($0.34.1.4$) 0.77 ($0.31.077$) $Pericitinis$ 18823 27 0.69 ($0.34.1.4$) 0.77 ($0.31.077$) $Pericitinis$ 46098 21 0.48 ($0.42.1.59$) 0.52 ($0.41.68$) $Pericitinis$ 46098 22 0.27 ($0.13.057$) 0.22 ($0.12.03$) $Pericitinis$ 46098 21 <td>Pheumonia</td> <td>Ruxolitinib</td> <td>23677</td> <td>136</td> <td>3.7 (3.37-4.05)</td> <td>3.3 (2.76-3.95)</td>	Pheumonia	Ruxolitinib	23677	136	3.7 (3.37-4.05)	3.3 (2.76-3.95)	
Perfectinib 3099 20 10.78 (8.57.13.56) 8.94 (5.69.14.05) Herpes zoster Tofactinib 3099 239 34.92 (32.51.37.51) 31.82 (27.58-36.71) Barichtinib 3099 16 39.7 (36.13.43.62) 34.96 (28.92.42.26) Rusolitinib 3099 27 5.27 (4.33.6.4) 5.24 (3.57.7.7) Filgotinib 3099 1 c c Upadacitnib 3099 1 c c Upadacitnib 3099 12 38.94 (32.94.46.03) 33.19 (23.81.46.27) Haematopolietic cryth- Filgotinib 18823 52 1.02 (0.89.1.18) 1.06 (0.81.1.4) Haematopolietic cryth- Barichtinib 18823 52 1.02 (0.89.1.31) 1.18 (0.8.1.73) Haematopolietic cryth- Filgotinib 18823 25 0.66 (0.34.1.4) 0.78 (0.19.3.15) Haematopolietic leu- Filgotinib 18823 2 0.69 (0.34.1.4) 0.73 (0.3.1.7) Haematopolietic leu- Filgotinib 18823 18 0.46 (0.41.1.01) 0.77		Filgotinib	23677	15	4.62 (3.5-6.09)	4.39 (2.55-7.58)	
Herpes zoster Tofactinib 3099 239 34.92 (32.51.37.51) 31.82 (27.58.67.1) Herpes zoster Baricitinib 3099 16 3.97 (36.13.43.2) 34.96 (28.92.42.26) Rusolitinib 3099 27 5.27 (4.33.6.4) 5.24 (3.57.7.7) Filgotinib 3099 1 c c Upadactinib 3099 42 38.94 (32.94.46.03) 31.9 (23.81.46.27) Haematopolicitic reyth- ropenia Filgotinib 18823 3 0.25 (0.14.0.45) 0.27 (0.09.0.85) Haematopolicitic reyth- ropenia Filgotinib 18823 52 1.02 (0.89.131) 1.18 (0.81.73) Haematopolicitic reyth- ropenia Baricitinib 18823 23 0.69 (0.34.1.4) 0.78 (0.19.31) Haematopolicitic leyth- policitic leyth- figotinib 18823 25 0.46 (0.41.101) 0.73 (0.3.1.77) Hermatopolicitic leyth- bopolicitic leyth- bopolicitic leyth- figotinib 46098 12 0.48 (0.42.055) 0.52 (0.41.06) Haematopolicitic leyth- bopolicitic leyth- bopolicitic leyth- figotinib 46098 12 0.48 (0.42.055) <t< td=""><td></td><td>Upadacitinib</td><td>23677</td><td>53</td><td>6.45 (5.55-7.51)</td><td>6.11 (4.53-8.23)</td></t<>		Upadacitinib	23677	53	6.45 (5.55-7.51)	6.11 (4.53-8.23)	
Herpes zoster Baricitinib 309 136 39.7 (36.13-43.62) 34.96 (28.92.42.63) Ruxolitnib 3099 27 5.27 (4.33-64) 5.24 (4.57.77) Filgotnib 3099 1 c c Updactinib 3099 1 c c Peficitnib 3099 1 c c Haematopoletic eryth- ropenia Peficitnib 18823 3 0.25 (0.140.45) 0.27 (0.09.085) Ruxolitnib 18823 52 1.02 (0.89-1.18) 1.06 (0.81-14) Baricitnib 18823 52 1.02 (0.89-1.13) 1.18 (0.8-1.73) Ruxolitnib 18823 22 0.69 (0.34-1.4) 0.78 (0.19-3.15) Baricitnib 18823 23 0.46 (0.41-1.01) 0.73 (0.3-1.77) Peficitnib 18823 5 0.64 (0.41-0.01) 0.73 (0.3-1.77) Baricitnib 46098 12 0.48 (0.42-0.55) 0.52 (0.41-0.68) Hermatopoletic leu- kopenia Ruxolitnib 46098 2 0.27 (0.12-0.53) 0.32 (0		Peficitinib	3099	20	10.78 (8.57-13.56)	8.94 (5.69-14.05)	
Herpe zoster Rusolitinib 3099 27 5.27 (433.6.4) 5.24 (3.57.7) Fligotinib 3099 1 c c Updactinib 3099 1 c c Harmatopoietic erythine 18823 3 0.25 (0.14.0.45) 0.027 (0.09.0.85) Haematopoietic erythine 18823 3 0.25 (0.14.0.45) 0.027 (0.09.0.85) Haematopoietic erythine 18823 52 1.02 (0.89-1.18) 1.06 (0.81-1.4) Haematopoietic erythine 18823 459 22.68 (21.38-24.00) 2.351 (20.92-26.4) Haematopoietic erythine 18823 459 22.68 (21.38-24.00) 0.251 (0.19-2.64.2) Hubactinib 18823 5 0.64 (0.41-1.01) 0.73 (0.3-1.77) Haematopoietic leveline 18823 5 0.64 (0.41-0.01) 0.27 (0.13-0.57) Hermatopoietic leveline 1893 12 0.48 (0.42-0.51) 0.52 (0.04-0.61) Haematopoietic leveline 1609 12 0.27 (0.13-0.51) 0.21 (0.05-0.31) Huematopoietic leveline 1609		Tofacitinib	3099	239	34.92 (32.51-37.51)	31.82 (27.58-36.71)	
Ruxolitinib3099275.27 (4.33-6.4)5.24 (4.37-7.7)Fligotinib30991ccUpadacitinib30994238.94 (32.94-6.0)33.19 (23.81-66.27)Peficitinib1882330.25 (0.14.0.4)0.27 (0.09-0.85)Tofactinib18823521.02 (0.89-1.18)1.06 (0.81-1.4)Baricitinib18823271.08 (0.89-1.31)1.18 (0.81-7.3)Ruxolitinib18823271.08 (0.89-1.31)1.18 (0.81-7.3)Ruxolitinib1882345922.68 (21.38-24.06)23.51 (20.92-26.42)Igotinib1882350.64 (0.41-1.01)0.73 (0.31-77)Upadacitnib1882350.64 (0.41-1.01)0.73 (0.31-17)Hemetropoletic leu- kopenia70.23 (0.60-34)0.27 (0.13-0.57)Peficitinib46098620.48 (0.42-0.55)0.52 (0.41-0.68)Ruxolitinib46098121.48 (1.34-1.63)1.57 (1.29-1.9)Ruxolitinib46098120.27 (0.13-0.51)0.32 (0.08-1.31)Hemetropoletic leu- kopeniaFligotinib4609820.27 (0.13-0.51)0.32 (0.08-0.61)Humatopoletic throm bocytopeniaGraditinib2558030.08 (0.60-0.51)0.11 (0.03-0.31)Humatopoletic throm bocytopeniaGraditinib2558030.80 (0.60-0.51)0.31 (0.03-0.31)Humatopoletic throm bocytopeniaFligotinib2558027.27 (7.48.49)8.36 (7.3-9.57)Humatopoletic throm bocytopenia		Baricitinib	3099	136	39.7 (36.13-43.62)	34.96 (28.92-42.26)	
Herentopoletic ferret hereficitnibJaes4238.94 (32.94.46.03)33.19 (23.81.46.27)Peficitnib1882330.25 (0.140.45)0.27 (0.09.085)Tofactitnib18823521.02 (0.89.1.18)1.06 (0.81.14)Baricitnib18823271.08 (0.89.1.31)1.18 (0.8.1.73)Ruxolitnib18823270.69 (0.34.1.4)0.78 (0.19.3.15)Filgotnib1882320.69 (0.34.1.4)0.78 (0.19.3.15)Upadacitnib1882350.64 (0.41.1.01)0.73 (0.3.1.77)Tofacitnib4609870.23 (0.16.0.34)0.27 (0.13.0.57)Tofacitnib46098620.48 (0.42.0.55)0.52 (0.41.0.68)Baricitnib460981121.48 (1.34.1.63)0.57 (1.29.1.9)Filgotnib460981121.48 (1.34.1.63)0.57 (1.29.1.9)Filgotnib46098120.27 (0.13.0.55)0.32 (0.40.64)Herretopoletic leu- kopeniaFilgotnib460981121.48 (1.34.1.63)0.57 (1.29.1.9)Herretopoletic leu- kopeniaFilgotnib2558020.12 (0.06-0.25)0.15 (0.04-0.61)Herretopoletic throm- bocytopeniaPeficitnib2558030.80 (0.05-0.15)0.11 (0.03-0.31)Herretopoletic throm- bocytopeniaEncitnib2558030.80 (0.05-0.15)0.11 (0.03-0.31)Herretopoletic throm- bocytopeniaFilgotnib2558030.80 (0.05-0.15)0.51 (0.50-0.51)Herretopoletic throm- bocytopeniaFilgot	Herpes zöster	Ruxolitinib	3099	27	5.27 (4.33-6.4)	5.24 (3.57-7.7)	
Peficitinib 18823 3 0.25 (0.14.0.45) 0.27 (0.09.0.85) Tofactinib 18823 52 1.02 (0.89-1.18) 1.06 (0.81-1.4) Baricitinib 18823 27 1.08 (0.89-1.31) 1.18 (0.8-1.73) Rusolitinib 18823 459 22.68 (21.38-24.06) 23.51 (20.92-26.42) Filgotinib 18823 2 0.69 (0.34-1.4) 0.78 (0.19-3.15) Upadacitinib 18823 5 0.64 (0.41-1.01) 0.73 (0.3-1.77) Tofactinib 18823 5 0.64 (0.41-1.01) 0.73 (0.3-1.77) Tofactinib 46098 7 0.23 (0.16-0.34) 0.27 (0.13-0.57) Tofactinib 46098 62 0.48 (0.42-0.55) 0.52 (0.41-0.68) Baricitinib 46098 112 1.48 (1.34-1.63) 1.57 (1.29-1.9) Hematopoietic leu- Filgotinib 46098 2 0.27 (0.13-0.55) 0.32 (0.08-0.13) Upadacitinib 46098 112 1.48 (1.34-1.63) 0.52 (0.41-0.61) 1.57 (1.29-1.9) Hematopoietic leu- Filgotinib		Filgotinib	3099	1	с	с	
Haematopoletic entrh Tofacitinib 18823 52 1.02 (0.89-1.18) 1.06 (0.81-1.4) Baricitinib 18823 27 1.08 (0.89-1.31) 1.18 (0.8-1.73) Ruxolitinib 18823 459 22.68 (21.38-24.06) 23.51 (20.92-26.42) Filgotinib 18823 2 0.69 (0.34-1.4) 0.78 (0.19-3.15) Upadacitinib 18823 5 0.64 (0.41-1.01) 0.73 (0.3-1.77) Vigadacitinib 18823 5 0.64 (0.41-0.3) 0.73 (0.3-1.77) Peficitinib 46098 7 0.23 (0.16-0.34) 0.73 (0.3-1.77) Hematopoletic lenkopoletic l		Upadacitinib	3099	42	38.94 (32.94-46.03)	33.19 (23.81-46.27)	
Haematopoletic erythropenia Barictinib 18823 27 1.08 (0.89-1.31) 1.18 (0.8-1.73) Ruxolitinib 18823 459 22.68 (21.38-24.06) 23.51 (20.92-26.42) Filgotinib 18823 2 0.69 (0.34-1.4) 0.78 (0.19-3.15) Upadacitinib 18823 5 0.64 (0.41-1.01) 0.73 (0.3-1.77) Peficitinib 46098 7 0.23 (0.16-0.34) 0.27 (0.13-0.57) Tofacitinib 46098 62 0.48 (0.42-0.55) 0.52 (0.41-0.68) Baricitinib 46098 32 0.39 (0.32-0.48) 0.45 (0.3-0.67) Ruxolitinib 46098 112 1.48 (1.34-1.63) 1.57 (1.29-1.9) Filgotinib 46098 2 0.27 (0.13-0.55) 0.32 (0.08-1.31) Upadacitinib 46098 2 0.27 (0.13-0.55) 0.32 (0.08-1.31) Itigotinib 25580 2 0.27 (0.13-0.55) 0.32 (0.08-0.51) Hematopoletic leu- hocytopenia Peficitinib 25580 2 0.27 (0.13-0.55) 0.27 (0.17-0.44) Hematopoletic throm- bocyto		Peficitinib	18823	3	0.25 (0.14-0.45)	0.27 (0.09-0.85)	
Haematopoletic eryth- ropenia Ruxolitinib 18823 459 22.68 (21.38-24.06) 23.51 (20.92-26.42) Filgotinib 18823 2 0.69 (0.34-1.4) 0.78 (0.19-3.15) Upadacitinib 18823 2 0.69 (0.34-1.4) 0.73 (0.3-1.77) Upadacitinib 18823 5 0.64 (0.41-1.01) 0.73 (0.3-1.77) Filgotinib 18823 62 0.48 (0.42-0.55) 0.52 (0.41-0.68) Filgotinib 46098 62 0.48 (0.42-0.55) 0.52 (0.41-0.68) Baricitinib 46098 32 0.39 (0.32-0.48) 0.45 (0.3-0.67) Ruxolitinib 46098 32 0.39 (0.32-0.48) 0.45 (0.3-0.67) Ruxolitinib 46098 112 1.48 (1.34-1.63) 1.57 (1.29-1.9) Filgotinib 46098 2 0.27 (0.13-0.55) 0.32 (0.08-1.31) Upadacitinib 46098 2 0.21 (0.06-0.25) 0.51 (0.04-0.61) Upadacitinib 25580 17 0.24 (0.19-0.3) 0.27 (0.17-0.44) Hematopoletic thrombocytopenia Baricitnib		Tofacitinib	18823	52	1.02 (0.89-1.18)	1.06 (0.81-1.4)	
Ruxolithib 18223 459 22.68 (21.38-24.06) 23.51 (20.32-26.42) Filgotinib 18823 2 0.69 (0.34-1.4) 0.78 (0.19-3.15) Upadacitinib 18823 5 0.64 (0.41-1.01) 0.73 (0.3-1.77) Peficitinib 46098 7 0.23 (0.16-0.34) 0.27 (0.13-0.57) Tofacitinib 46098 62 0.48 (0.42-0.55) 0.52 (0.41-0.68) Baricitinib 46098 32 0.39 (0.32-0.48) 0.45 (0.3-0.67) Ruxolitinib 46098 32 0.39 (0.32-0.48) 0.45 (0.3-0.67) Ruxolitinib 46098 32 0.39 (0.32-0.48) 0.45 (0.3-0.67) Ruxolitinib 46098 112 1.48 (1.34-1.63) 1.57 (1.29-1.9) Filgotinib 46098 2 0.27 (0.13-0.55) 0.32 (0.08-1.31) Upadacitinib 46098 2 0.12 (0.06-0.25) 0.15 (0.04-0.61) Tofactinib 25580 17 0.24 (0.19-0.3) 0.27 (0.17-0.44) Hematopoietic throm- bocytopenia Baricitinib 25580 3	Haematopoietic eryth-	Baricitinib	18823	27	1.08 (0.89-1.31)	1.18 (0.8-1.73)	
Upadacitinib 18823 5 0.64 (0.41-1.01) 0.73 (0.3-1.77) Peficitinib 46098 7 0.23 (0.16-0.34) 0.27 (0.13-0.57) Tofacitinib 46098 62 0.48 (0.42-0.55) 0.52 (0.41-0.68) Baricitinib 46098 32 0.39 (0.32-0.48) 0.45 (0.3-0.67) Ruxolitinib 46098 112 1.48 (1.34-1.63) 1.57 (1.29-1.9) Filgotinib 46098 2 0.27 (0.13-0.55) 0.32 (0.08-1.31) Upadacitinib 46098 2 0.27 (0.13-0.55) 0.32 (0.08-1.31) Upadacitinib 46098 2 0.27 (0.12-0.33) 0.24 (0.09-0.64) Hematopoietic throm- bocytopenia Peficitinib 25580 2 0.12 (0.06-0.25) 0.15 (0.04-0.61) Hematopoietic throm- bocytopenia Baricitinib 25580 3 0.08 (0.05-0.15) 0.11 (0.3-0.33) Hematopoietic throm- bocytopenia Baricitinib 25580 275 7.92 (7.4-8.49) 8.36 (7.3-9.57) Hematopoietic throm- bocytopenia Filgotinib 25580 0 c	ropenia	Ruxolitinib	18823	459	22.68 (21.38-24.06)	23.51 (20.92-26.42)	
Hematopoletic leu- kopenia Peficitinib 46098 7 0.23 (0.16-0.34) 0.27 (0.13-0.57) Hematopoletic leu- kopenia Baricitinib 46098 62 0.48 (0.42-0.55) 0.52 (0.41-0.68) Baricitinib 46098 32 0.39 (0.32-0.48) 0.45 (0.3-0.67) Ruxolitinib 46098 112 1.48 (1.34-1.63) 1.57 (1.29-1.9) Filgotinib 46098 2 0.27 (0.13-0.55) 0.32 (0.08-1.31) Upadacitinib 46098 4 0.20 (0.12-0.33) 0.24 (0.09-0.64) Image: Peficitinib 25580 2 0.12 (0.06-0.25) 0.15 (0.04-0.61) Hematopoletic throm- bocytopenia Baricitinib 25580 3 0.08 (0.05-0.15) 0.11 (0.03-0.33) Hematopoletic throm- bocytopenia Baricitinib 25580 3 0.08 (0.05-0.15) 0.11 (0.03-0.33) Hematopoletic throm- bocytopenia Filgotinib 25580 0 c c		Filgotinib	18823	2	0.69 (0.34-1.4)	0.78 (0.19-3.15)	
Instruction Instruction Instruction Hematopoietic leu- kopenia Baricitinib 46098 32 0.39 (0.32-0.48) 0.45 (0.3-0.67) Ruxolitinib 46098 32 0.39 (0.32-0.48) 0.45 (0.3-0.67) Ruxolitinib 46098 112 1.48 (1.34-1.63) 1.57 (1.29-1.9) Filgotinib 46098 2 0.27 (0.13-0.55) 0.32 (0.08-1.31) Upadacitinib 46098 4 0.20 (0.12-0.33) 0.24 (0.09-0.64) Image: Transition of the structure 15580 2 0.12 (0.06-0.25) 0.15 (0.04-0.61) Hematopoietic throm- bocytopenia Baricitinib 25580 3 0.08 (0.05-0.15) 0.27 (0.17-0.44) Hematopoietic throm- bocytopenia Baricitinib 25580 3 0.08 (0.05-0.15) 0.11 (0.03-0.33) Ruxolitinib 25580 275 7.92 (7.48.49) 8.36 (7.3-9.57) Filgotinib 25580 0 c c		Upadacitinib	18823	5	0.64 (0.41-1.01)	0.73 (0.3-1.77)	
Hematopoietic leu- kopenia Baricitinib 46098 32 0.39 (0.32-0.48) 0.45 (0.3-0.67) Ruxolitinib 46098 112 1.48 (1.34-1.63) 1.57 (1.29-1.9) Filgotinib 46098 2 0.27 (0.13-0.55) 0.32 (0.08-1.31) Upadacitinib 46098 4 0.20 (0.12-0.33) 0.24 (0.09-0.64) Peficitinib 25580 2 0.12 (0.06-0.25) 0.15 (0.04-0.61) Tofacitinib 25580 17 0.24 (0.19-0.3) 0.27 (0.17-0.44) Baricitinib 25580 3 0.08 (0.05-0.15) 0.11 (0.03-0.33) Ruxolitinib 25580 275 7.92 (7.4-8.49) 8.36 (7.3-9.57) Filgotinib 25580 0 c c		Peficitinib	46098	7	0.23 (0.16-0.34)	0.27 (0.13-0.57)	
Hematopoletic leu- kopenia Ruxolitinib 46098 112 1.48 (1.34-1.63) 1.57 (1.29-1.9) Filgotinib 46098 2 0.27 (0.13-0.55) 0.32 (0.08-1.31) Upadacitinib 46098 4 0.20 (0.12-0.33) 0.24 (0.09-0.64) Peficitinib 25580 2 0.12 (0.06-0.25) 0.15 (0.04-0.61) Tofacitinib 25580 17 0.24 (0.19-0.3) 0.27 (0.17-0.44) Baricitinib 25580 3 0.08 (0.05-0.15) 0.11 (0.03-0.33) Ruxolitinib 25580 275 7.92 (7.4-8.49) 8.36 (7.3-9.57) Filgotinib 25580 0 c c		Tofacitinib	46098	62	0.48 (0.42-0.55)	0.52 (0.41-0.68)	
Ruxolitinib 46098 112 1.48 (1.34-1.63) 1.57 (1.29-1.9) Filgotinib 46098 2 0.27 (0.13-0.55) 0.32 (0.08-1.31) Upadacitinib 46098 4 0.20 (0.12-0.33) 0.24 (0.09-0.64) Peficitinib 25580 2 0.12 (0.06-0.25) 0.15 (0.04-0.61) Tofacitinib 25580 17 0.24 (0.19-0.3) 0.27 (0.17-0.44) Baricitinib 25580 3 0.08 (0.05-0.15) 0.11 (0.03-0.33) Ruxolitinib 25580 275 7.92 (7.4-8.49) 8.36 (7.3-9.57) Filgotinib 25580 0 c c	Hematopoietic leu-	Baricitinib	46098	32	0.39 (0.32-0.48)	0.45 (0.3-0.67)	
Upadacitinib 46098 4 0.20 (0.12-0.33) 0.24 (0.09-0.64) Peficitinib 25580 2 0.12 (0.06-0.25) 0.15 (0.04-0.61) Tofacitinib 25580 17 0.24 (0.19-0.3) 0.27 (0.17-0.44) Baricitinibih 25580 3 0.08 (0.05-0.15) 0.11 (0.03-0.33) Buxolitinib 25580 275 7.92 (7.4-8.49) 8.36 (7.3-9.57) Filgotinib 25580 0 c c	kopenia	Ruxolitinib	46098	112	1.48 (1.34-1.63)	1.57 (1.29-1.9)	
Peficitinib 25580 2 0.12 (0.06-0.25) 0.15 (0.04-0.61) Tofacitinib 25580 17 0.24 (0.19-0.3) 0.27 (0.17-0.44) Baricitinib 25580 3 0.08 (0.05-0.15) 0.11 (0.03-0.33) Ruxolitinib 25580 275 7.92 (7.4-8.49) 8.36 (7.3-9.57) Filgotinib 25580 0 c c		Filgotinib	46098	2	0.27 (0.13-0.55)	0.32 (0.08-1.31)	
Tofacitinib 25580 17 0.24 (0.19-0.3) 0.27 (0.17-0.44) Hematopoietic throm- bocytopenia Baricitinib 25580 3 0.08 (0.05-0.15) 0.11 (0.03-0.33) Ruxolitinib 25580 275 7.92 (7.4-8.49) 8.36 (7.3-9.57) Filgotinib 25580 0 c c		Upadacitinib	46098	4	0.20 (0.12-0.33)	0.24 (0.09-0.64)	
Hematopoietic throm- bocytopenia Baricitinib 25580 3 0.08 (0.05-0.15) 0.11 (0.03-0.33) Ruxolitinib 25580 275 7.92 (7.4-8.49) 8.36 (7.3-9.57) Filgotinib 25580 0 c c		Peficitinib	25580	2	0.12 (0.06-0.25)	0.15 (0.04-0.61)	
Hematopoletic throm- bocytopenia Ruxolitinib 25580 275 7.92 (7.4-8.49) 8.36 (7.3-9.57) Filgotinib 25580 0 c c		Tofacitinib	25580	17	0.24 (0.19-0.3)	0.27 (0.17-0.44)	
Ruxolitinib 25580 275 7.92 (7.4-8.49) 8.36 (7.3-9.57) Filgotinib 25580 0 c c	Hematopoietic throm-	Baricitinib	25580	3	0.08 (0.05-0.15)	0.11 (0.03-0.33)	
	bocytopenia	Ruxolitinib	25580	275	7.92 (7.4-8.49)	8.36 (7.3-9.57)	
Upadacitinib 25580 0 c c		Filgotinib	25580	0	с	с	
		Upadacitinib	25580	0	с	с	

Table 2. Number of reports and crude ROR and adjusted ROR of JAK inhibitor related AEs

	_	No).			
AE Category	Drug	Total case	Case	── Crude ROR [®] (95% Cl) [®]	Adjusted ROR (95% CI)	
	Peficitinib	43202	5	0.18 (0.11-0.28)	0.29 (0.12-0.71)	
	Tofacitinib	43202	54	0.45 (0.39-0.51)	0.61 (0.46-0.8)	
	Baricitinib	43202	16	0.27 (0.21-0.34)	0.42 (0.26-0.69)	
Liver disorder	Ruxolitinib	43202	94	1.31 (1.17-1.46)	1.71 (1.39-2.11)	
	Filgotinib	43202	3	0.44 (0.24-0.79)	0.77 (0.24-2.42)	
	Upadacitinib	43202	3	0.16 (0.09-0.29)	0.28 (0.09-0.87)	
	Peficitinib	28912	43	2.52 (2.14-2.95)	2.38 (1.73-3.25)	
	Tofacitinib	28912	36	0.45 (0.38-0.53)	0.44 (0.32-0.61)	
Develing	Baricitinib	28912	11	0.28 (0.2-0.37)	0.27 (0.15-0.48)	
Renal impairment	Ruxolitinib	28912	55	1.13 (0.98-1.3)	1.02 (0.78-1.33)	
	Filgotinib	28912	9	2.12 (1.5-3)	2.02 (1.02-3.99)	
	Upadacitinib	28912	3	0.25 (0.14-0.44)	0.23 (0.07-0.72)	
	Peficitinib	34389	21	0.97 (0.78-1.22)	1.02 (0.66-1.59)	
	Tofacitinib	34389	123	1.35 (1.23-1.48)	1.44 (1.19-1.73)	
	Baricitinib	34389	41	0.89 (0.76-1.04)	0.96 (0.7-1.32)	
ILD	Ruxolitinib	34389	25	0.42 (0.34-0.51)	0.36 (0.24-0.53)	
	Filgotinib	34389	8	1.56 (1.08-2.25)	1.72 (0.84-3.55)	
	Upadacitinib	34389	24	1.77 (1.43-2.19)	1.90 (1.25-2.89)	
	Peficitinib	15830	15	1.53 (1.18-1.99)	1.23 (0.73-2.06)	
	Tofacitinib	15830	28	0.65 (0.54-0.79)	0.57 (0.39-0.82)	
Condias failure	Baricitinib	15830	6	0.28 (0.19-0.42)	0.23 (0.1-0.52)	
Cardiac failure	Ruxolitinib	15830	55	2.10 (1.83-2.41)	1.85 (1.41-2.42)	
	Filgotinib	15830	1	c	с	
	Upadacitinib	15830	1	c	с	
	Peficitinib	23591	14	0.95 (0.72-1.24)	0.83 (0.48-1.41)	
	Tofacitinib	23591	76	1.20 (1.07-1.35)	1.12 (0.89-1.4)	
Embolic and throm-	Baricitinib	23591	56	1.83 (1.59-2.1)	1.64 (1.25-2.15)	
botic events	Ruxolitinib	23591	21	0.52 (0.41-0.64)	0.46 (0.3-0.72)	
	Filgotinib	23591	9	2.62 (1.85-3.71)	2.30 (1.16-4.54)	
	Upadacitinib	23591	10	1.04 (0.75-1.43)	0.91 (0.49-1.72)	

AE Cohonen	Davia	No	•			
AE Category	Drug -	Total case	Case	Crude ROR ^a (95% CI) ^b	Adjusted ROR (95% CI)	
	Peficitinib	6051	5	1.32 (0.84-2.07)	1.23 (0.51-2.98)	
	Tofacitinib	6051	21	1.29 (1.03-1.61)	1.24 (0.81-1.91)	
Gastrointestinal	Baricitinib	6051	6	0.74 (0.49-1.12)	0.70 (0.31-1.56)	
perforation	Ruxolitinib	6051	4	0.39 (0.23-0.64)	0.37 (0.14-0.98)	
	Filgotinib	6051	3	3.30 (1.84-5.92)	3.09 (0.98-9.73)	
	Upadacitinib	6051	2	0.81 (0.4-1.64)	0.76 (0.19-3.04)	
	Peficitinib	4719	1	с	с	
	Tofacitinib	4719	11	0.86 (0.64-1.17)	0.89 (0.49-1.62)	
11	Baricitinib	4719	0	с	с	
Hyperglycemia	Ruxolitinib	4719	3	0.37 (0.21-0.67)	0.37 (0.12-1.14)	
	Filgotinib	4719	0	с	с	
	Upadacitinib	4719	0	с	с	
dds ratio, ^b Confder	nce interval, ^c Number	r of cases was <2.			PBF	

onset, and the calculated Weibull parameters in Table 4. The time-to-onset of pneumonia and HZ were highly variable for all JAK inhibitors. For tofacitinib, which was reported most frequently, the median time-to-onset (interquartile range: IQR) and the Weibull parameter β (95% CI) for pneumonia were 166.0 (IQR: 57-309) days and 1.04 (95% CI, 0.94%, 1.13%), and for HZ they were 232 (IQR: 73-402.8) days and 1.23 (95% CI, 1.08%, 1.38%), respectively. Hematopoietic erythropenia, leukopenia, and thrombocytopenia were most frequently reported with ruxolitinib and occurred early in the initiation of treatment. The median time-to-onset (IQR) and the Weibull β values were 50.0 (IOR: 25.5–105.5) days and 0.91 (95% CI, 0.81%, 1.00%) for erythropenia, 31.0 (IQR: 11-139) days and 0.72 (95% CI, 0.55%, 0.89%) for leukopenia, and 37.0 (IQR: 17.8-105.3) days and 0.84 (95% CI, 0.74%, 0.95%) for thrombocytopenia. The incidence of hepatic and renal disorders varied according to the formulation; however, the number of reports was small. ILD was reported at a median of 3 to 4 months after drug initiation. Cardiac failure, embolic and thrombotic events, and GP were reported less frequently; trends in the duration of these AEs could not be ascertained.

Discussion

Pneumonia is a serious infectious event observed in clinical trials involving JAK inhibitors [13, 32-36]. In our study, pneumonia was the most reported infectionrelated AE, with ROR signals detected. The median time-to-onset of pneumonia ranged from 2 to 6 months with all JAK inhibitors. Multiple logistic regression analysis showed that pneumonia was reported more frequently in males over 60. In safety reports of tofacitinib, males and older people are reported to be at risk of serious infections, including pneumonia [32].

Herpes zoster is also a frequent AE of JAK inhibitor use, as per our study. Severe cases have been reported to date, but infrequently so [32-36]. Irreversible ganglion cell necrosis may result in residual postherpetic neuralgia and sequelae, such as physical disability and mental anguish, making it an AE that requires sufficient vigilance, with a poor prognosis in severe cases of HZ [37]. The degree of inhibition of the JAK3-dependent pathway is low and thus appears to have little effect on homeostatic immune functions that control infection and HZ [1]. A family history of HZ, physical trauma, older age, female gender, psychological stress, and the presence of comorbidities such as diabetes, RA, cardiovascular diseases, kidney disease, systemic lupus erythematosus, and inflammatory bowel disease have been reported as

Table 3. Variable and adjusted ROR in multiple logistic regression analysis

AE Category	Drug	Variables	Estima	ated Beta	Wald Test	Adjusted ROR ^a (95% Cl) ^b
		Reporting year	β1	0	0.0178	1 (1–1.01)
	Peficitinib	Female	β2	-0.19	<0.0001	0.83 (0.81–0.85)
		\geq 60 years old	β3	0.51	<0.0001	1.66 (1.61–1.71)
		Reporting year	β1	0	0.1507	1(1-1)
	Tofacitinib	Female	β2	-0.2	<0.0001	0.82 (0.8–0.84)
		\geq 60 years old	β3	0.5	<0.0001	1.65 (1.6–1.7)
		Reporting year	β1	0	0.0859	1.00 (1–1)
	Baricitinib	Female	β2	-0.19	<0.0001	0.82 (0.8–0.85)
		\geq 60 years old	β3	0.5	<0.0001	1.66 (1.61–1.71)
Pneumonia		Reporting year	β1	0	0.0147	1 (1–1.01)
	Ruxolitinib	Female	β2	-0.19	<0.0001	0.83 (0.81–0.85)
		≥60 years old	β3	0.5	<0.0001	1.66 (1.61–1.71)
		Reporting year	β1	0	0.0085	1.00 (1–1.01)
	Filgotinib	Female	β2	-0.19	<0.0001	0.83 (0.81–0.85)
		\geq 60 years old	β3	0.51	<0.0001	1.66 (1.61–1.71)
		Reporting year	β1	0	0.0177	1.00 (1-1.01)
	Upadacitinib	Female	β2	-0.19	<0.0001	0.83 (0.81–0.85)
		≥60 years old	β3	0.51	<0.0001	1.66 (1.61–1.71)
		Reporting year	β1	0.02	<0.0001	1.02 (1.01–1.02)
	Peficitinib	Female	β2	0.5	<0.0001	1.65 (1.54–1.78)
		\geq 60 years old	β3	-0.08	0.0427	0.93 (0.86–1)
		Reporting year	β1	0.01	0.0286	1.01 (1–1.02)
	Tofacitinib	Female	β2	0.45	<0.0001	1.57 (1.46–1.69)
		\geq 60 years old	β3	-0.11	0.0031	0.90 (0.83–0.96)
		Reporting year	β1	0.01	0.0199	1.01 (1–1.02)
	Baricitinib	Female	β2	0.47	<0.0001	1.60 (1.49–1.72)
		≥60 years old	β3	-0.1	0.0084	0.91 (0.84–0.98)
Herpes zoster		Reporting year	β1	0.02	<0.0001	1.02 (1.01–1.02)
	Ruxolitinib	Female	β2	0.51	<0.0001	1.66 (1.55–1.79)
		≥60 years old	β3	-0.08	0.0382	0.93 (0.86–1)
		Reporting year	β1	с	с	С
	Filgotinib	Female	β2	с	С	С
		\geq 60 years old	β3	с	С	с
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.02)
	Upadacitinib	Female	β2	0.5	<0.0001	1.65 (1.53–1.77)
		≥60 years old	β3	-0.08	0.0321	0.92 (0.86–0.99)

AE Category	Drug	Variables	Estima	ated Beta	Wald Test	Adjusted ROR ^a (95% Cl) ^b
		Reporting year	β1	-0.03	<0.0001	0.97 (0.97–0.97)
	Peficitinib	Female	β2	0.17	<0.0001	1.19 (1.15–1.22)
		\geq 60 years old	β3	0.42	<0.0001	1.53 (1.48–1.58)
		Reporting year	β1	-0.03	<0.0001	0.97 (0.97–0.97)
	Tofacitinib	Female	β2	0.17	<0.0001	1.19 (1.15–1.22)
		\geq 60 years old	β3	0.42	<0.0001	1.53 (1.48–1.58)
		Reporting year	β1	-0.03	<0.0001	0.97 (0.97–0.97)
	Baricitinib	Female	β2	0.17	<0.0001	1.19 (1.15–1.22)
Hematopoietic		\geq 60 years old	β3	0.42	<0.0001	1.53 (1.48–1.58)
erythropenia		Reporting year	β1	-0.03	<0.0001	0.97 (0.96–0.97)
	Ruxolitinib	Female	β2	0.17	<0.0001	1.19 (1.16–1.23)
		\geq 60 years old	β3	0.41	<0.0001	1.50 (1.45–1.55)
		Reporting year	β1	-0.03	<0.0001	0.97 (0.97–0.97)
	Filgotinib	Female	β2	0.17	<0.0001	1.19 (1.15–1.22)
		\geq 60 years old	β3	0.42	<0.0001	1.53 (1.48–1.58)
		Reporting year	β1	-0.03	<0.0001	0.97 (0.97–0.97)
	Upadacitinib	Female	β2	0.17	<0.0001	1.19 (1.15–1.22)
		\geq 60 years old	β3	0.42	<0.0001	1.53 (1.48–1.58)
		Reporting year	β1	-0.03	<0.0001	0.97 (0.97–0.98)
	Peficitinib	Female	β2	0	0.6748	1 (0.99–1.02)
		\geq 60 years old	β3	0.1	<0.0001	1.10 (1.08–1.13)
		Reporting year	β1	-0.03	<0.0001	0.97 (0.97–0.98)
	Tofacitinib	Female	β2	0	0.629	1 (0.99–1.02)
		\geq 60 years old	β3	0.1	<0.0001	1.10 (1.08–1.13)
		Reporting year	β1	-0.03	<0.0001	0.97 (0.97–0.98)
	Baricitinib	Female	β2	0	0.6573	1 (0.99–1.02)
Hematopoietic		\geq 60 years old	β3	0.1	<0.0001	1.10 (1.08–1.13)
leukopenia		Reporting year	β1	-0.03	<0.0001	0.97 (0.97–0.98)
	Ruxolitinib	Female	β2	0	0.7018	1 (0.98–1.02)
		\geq 60 years old	β3	0.1	<0.0001	1.10 (1.08–1.12)
		Reporting year	β1	-0.03	<0.0001	0.97 (0.97–0.98)
	Filgotinib	Female	β2	0	0.6994	1.00 (0.98–1.02)
		≥60 years old	β3	0.1	<0.0001	1.10 (1.08–1.13)
		Reporting year	β1	-0.03	<0.0001	0.97 (0.97–0.98)
	Upadacitinib	Female	β2	0	0.6891	1 (0.99–1.02)
		≥60 years old	β3	0.1	<0.0001	1.10 (1.08–1.13)

AE Category	Drug	Variables	Estima	ated Beta	Wald Test	Adjusted ROR (95% CI)⁵
		Reporting year	β1	-0.05	<0.0001	0.96 (0.95–0.9
	Peficitinib	Female	β2	-0.05	0.0002	0.95 (0.93–0.93
		\geq 60 years old	β3	0.49	<0.0001	1.63 (1.58–1.6
		Reporting year	β1	-0.05	<0.0001	0.96 (0.95–0.9
	Tofacitinib	Female	β2	-0.05	0.0003	0.95 (0.93–0.93
		\geq 60 years old	β3	0.49	<0.0001	1.63 (1.59–1.6
		Reporting year	β1	-0.05	<0.0001	0.96 (0.95–0.9
	Baricitinib	Female	β2	-0.05	0.0003	0.95 (0.93–0.9
Hematopoietic		\geq 60 years old	β3	0.49	<0.0001	1.63 (1.58–1.6
hrombocytopenia		Reporting year	β1	-0.05	<0.0001	0.95 (0.95–0.9
	Ruxolitinib	Female	β2	-0.05	0.0002	0.95 (0.93–0.9
		\geq 60 years old	β3	0.48	<0.0001	1.62 (1.57–1.6
		Reporting year	β1	с	с	с
	Filgotinib	Female	β2	с	с	с
		≥60 years old	β3	с	с	с
		Reporting year	β1	с	с	С
	Upadacitinib	Female	β2	с	с	с
		≥60 years old	β3	с	с	с
		Reporting year	β1	-0.07	<0.0001	0.94 (0.93–0.9
	Peficitinib	Female	β2	-0.04	0.0002	0.96 (0.94–0.9
		≥60 years old	β3	-0.16	<0.0001	0.85 (0.84–0.8
		Reporting year	β1	-0.07	<0.0001	0.94 (0.93–0.9
	Tofacitinib	Female	β2	-0.04	0.0002	0.96 (0.94–0.9
		≥60 years old	β3	-0.16	<0.0001	0.85 (0.84–0.8
		Reporting year	β1	-0.07	<0.0001	0.94 (0.93–0.9
	Baricitinib	Female	β2	-0.04	0.0002	0.96 (0.94–0.9
		≥60 years old	β3	-0.16	<0.0001	0.85 (0.84–0.8
Liver disorder		Reporting year	β1	-0.07	<0.0001	0.93 (0.93–0.9
	Ruxolitinib	Female	β2	-0.04	0.0002	0.96 (0.94–0.9
		≥60 years old	β3	-0.16	<0.0001	0.85 (0.84–0.8
		Reporting year	β1	-0.07	<0.0001	0.94 (0.93–0.9
	Filgotinib	Female	β2	-0.04	0.0002	0.96 (0.94–0.9
		≥60 years old	β3	-0.16	<0.0001	0.85 (0.84–0.8
		Reporting year	β1	-0.07	<0.0001	0.94 (0.93–0.9
	Upadacitinib	Female	β2	-0.04	0.0002	0.96 (0.94–0.9
		\geq 60 years old	β3	-0.16	<0.0001	0.85 (0.84–0.8

AE Category	Drug	Variables	Estima	ated Beta	Wald Test	Adjusted ROR ^a (95% CI) ^b
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.01)
	Peficitinib	Female	β2	-0.23	<0.0001	0.79 (0.77–0.81)
		\geq 60 years old	β3	0.37	<0.0001	1.45 (1.41–1.48)
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.01)
	Tofacitinib	Female	β2	-0.23	<0.0001	0.79 (0.78–0.81)
		\geq 60 years old	β3	0.37	<0.0001	1.45 (1.41–1.49)
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.01)
	Baricitinib	Female	β2	-0.23	<0.0001	0.79 (0.78–0.81)
Popal impairment		\geq 60 years old	β3	0.37	<0.0001	1.45 (1.41–1.49)
Renal impairment		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.01)
	Ruxolitinib	Female	β2	-0.23	<0.0001	0.79 (0.77–0.81)
		\geq 60 years old	β3	0.37	<0.0001	1.45 (1.41–1.48)
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.01)
	Filgotinib	Female	β2	-0.23	<0.0001	0.79 (0.77–0.81)
		\geq 60 years old	β3	0.37	<0.0001	1.45 (1.41–1.48)
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.01)
	Upadacitinib	Female	β2	-0.23	<0.0001	0.79 (0.78–0.81)
		\geq 60 years old	β3	0.37	<0.0001	1.45 (1.41–1.48)
		Reporting year	β1	-0.02	<0.0001	0.98 (0.98–0.99)
	Peficitinib	Female	β2	-0.45	<0.0001	0.64 (0.62–0.65)
		\geq 60 years old	β3	1.05	<0.0001	2.85 (2.77–2.93)
		Reporting year	β1	-0.02	<0.0001	0.98 (0.98–0.99)
	Tofacitinib	Female	β2	-0.45	<0.0001	0.64 (0.62–0.65)
		\geq 60 years old	β3	1.05	<0.0001	2.85 (2.77–2.93)
		Reporting year	β1	-0.02	<0.0001	0.98 (0.98–0.99)
	Baricitinib	Female	β2	-0.45	<0.0001	0.64 (0.62–0.65)
		\geq 60 years old	β3	1.05	<0.0001	2.85 (2.77–2.93)
ILD		Reporting year	β1	-0.02	<0.0001	0.98 (0.98–0.99)
	Ruxolitinib	Female	β2	-0.45	<0.0001	0.64 (0.62–0.65)
		\geq 60 years old	β3	1.05	<0.0001	2.85 (2.77–2.94)
		Reporting year	β1	-0.02	<0.0001	0.98 (0.98–0.99)
	Filgotinib	Female	β2	-0.45	<0.0001	0.64 (0.62–0.65)
		≥60 years old	β3	1.05	<0.0001	2.85 (2.77–2.93)
		Reporting year	β1	-0.02	<0.0001	0.98 (0.98–0.99)
	Upadacitinib	Female	β2	-0.45	<0.0001	0.64 (0.62–0.65)
		≥60 years old	β3	1.05	<0.0001	2.85 (2.77–2.93)

AE Category	Drug	Variables	Estima	ited Beta	Wald Test	Adjusted ROF (95% CI) ^b
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.0
	Peficitinib	Female	β2	0.18	<0.0001	1.2 (1.16–1.24
		≥60 years old	β3	0.49	<0.0001	1.63 (1.58–1.6
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.0
	Tofacitinib	Female	β2	0.18	<0.0001	1.2 (1.16–1.24
		\geq 60 years old	β3	0.49	<0.0001	1.63 (1.58–1.6
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.0
	Baricitinib	Female	β2	0.18	<0.0001	1.20 (1.16–1.2
		\geq 60 years old	β3	0.49	<0.0001	1.63 (1.58–1.6
Cardiac failure		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.0
	Ruxolitinib	Female	β2	0.18	<0.0001	1.20 (1.16–1.2
		\geq 60 years old	β3	0.49	<0.0001	1.63 (1.57–1.6
		Reporting year	β1	с	с	с
	Filgotinib	Female	β2	с	с	с
		\geq 60 years old	β3	с	с	с
		Reporting year	β1	с	с	с
	Upadacitinib	Female	β2	с	с	с
		\geq 60 years old	β3	с	с	с
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.0
	Peficitinib	Female	β2	-0.01	0.2858	0.99 (0.96–1.0
		\geq 60 years old	β3	0.36	<0.0001	1.44 (1.40–1.4
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.0
	Tofacitinib	Female	β2	-0.01	0.272	0.99 (0.96–1.0
		\geq 60 years old	β3	0.36	<0.0001	1.44 (1.40–1.4
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.0
	Baricitinib	Female	β2	-0.02	0.2517	0.98 (0.96–1.0
Embolic and		≥60 years old	β3	0.36	<0.0001	1.44 (1.39–1.4
hrombotic events		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.0
	Ruxolitinib	Female	β2	-0.01	0.2795	0.99 (0.96–1.0
		≥60 years old	β3	0.36	<0.0001	1.44 (1.4–1.48
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.0
	Filgotinib	Female	β2	-0.01	0.2736	0.99 (0.96–1.0
		≥60 years old	β3	0.36	<0.0001	1.44 (1.4–1.48
		Reporting year	β1	0.01	<0.0001	1.01 (1.01–1.0
	Upadacitinib	Female	β2	-0.01	0.2826	0.99 (0.96–1.0
		≥60 years old	β3	0.36	<0.0001	1.44 (1.4–1.48

AE Category	Drug	Variables	Estima	ated Beta	Wald Test	Adjusted ROF (95% CI) ^b
		Reporting year	β1	0	0.0532	1 (1–1.01)
Gastrointestinal	Peficitinib	Female	β2	-0.01	0.7942	0.99 (0.94–1.0
		\geq 60 years old	β3	0.21	<0.0001	1.23 (1.16–1.
		Reporting year	β1	0	0.0556	1 (1–1.01)
	Tofacitinib	Female	β2	-0.01	0.782	0.99 (0.94–1.0
		\geq 60 years old	β3	0.21	<0.0001	1.23 (1.16–1.
		Reporting year	β1	0	0.0476	1 (1–1.01)
	Baricitinib	Female	β2	-0.01	0.8115	0.99 (0.94–1.0
		\geq 60 years old	β3	0.21	<0.0001	1.23 (1.16–1.
perforation		Reporting year	β1	0	0.0466	1 (1–1.01)
	Ruxolitinib	Female	β2	-0.01	0.7968	0.99 (0.94–1.0
		\geq 60 years old	β3	0.21	<0.0001	1.23 (1.17–1.
		Reporting year	β1	0	0.0556	1 (1–1.01)
	Filgotinib	Female	β2	-0.01	0.7881	0.99 (0.94–1.0
		\geq 60 years old	β3	0.21	<0.0001	1.23 (1.16–1.
		Reporting year	β1	0	0.0502	1 (1–1.01)
	Upadacitinib	Female	β2	-0.01	0.8016	0.99 (0.94–1.0
		\geq 60 years old	β3	0.21	<0.0001	1.23 (1.16–1.
		Reporting year	β1	с	с	с
	Peficitinib	Female	β2	с	с	с
		\geq 60 years old	β3	с	с	с
Hyperglycemia		Reporting year	β1	0.01	0.0003	1.01 (1–1.02
	Tofacitinib	Female	β2	-0.32	<0.0001	0.73 (0.69–0.7
		≥60 years old	β3	-0.08	0.0111	0.93 (0.87–0.9
		Reporting year	β1	с	с	с
	Baricitinib	Female	β2	с	с	с
		≥60 years old	β3	с	с	с
		Reporting year	β1	0.01	0.0003	1.01 (1–1.02
	Ruxolitinib	Female	β2	-0.32	<0.0001	0.73 (0.69–0.7
		\geq 60 years old	β3	-0.08	0.012	0.93 (0.87–0.9
		Reporting year	β1	с	с	с
	Filgotinib	Female	β2	с	с	с
		≥60 years old	β3	с	с	с
		Reporting year	β1	с	с	с
	Upadacitinib	Female	β2	с	с	с
		\geq 60 years old	β3	с	с	с

^aThe adjusted RORs were calculated with the estimates of betas, ^bConfdence interval, ^cNumber of cases was <2.

PBR

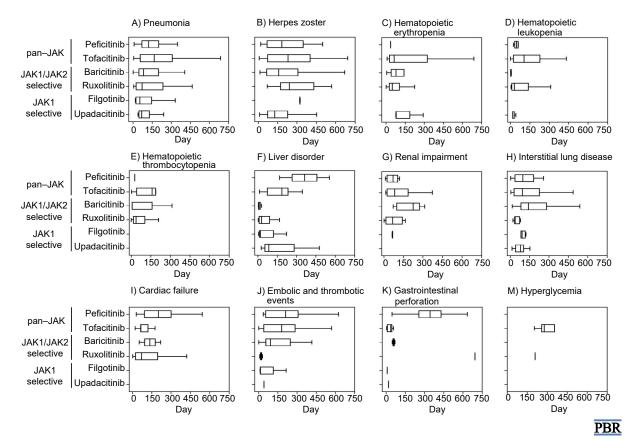


Figure 2. Box plots for AEs

A) Pneumonia, B) HZ, C) Hematopoietic erythropenia, D) Hematopoietic leukopenia, E) Hematopoietic thrombocytopenia, F) Liver disorder, G) Renal impairment, H) ILD, I) Cardiac failure, J) Embolic and thrombotic events, K) Gastrointestinal perforation, L) Hyperglycemia, showing suspected drugs plotted against AE onset time, as observed in the JADER database JADER: Japanese adverse drug event report.

risk factors for HZ and should be addressed according to patient risk [38]. In our study, multiple logistic regression results indicate that HZ is more commonly reported in females under 60. HZ may be underreported in older age groups. The median time-to-onset of HZ with JAK inhibitors ranges from 4 to 7 months. The incidence of severe infections, including pneumonia and HZ, has not been shown to increase with long-term JAK inhibitor use and remains stable over time [32, 33], suggesting the need for constant monitoring of signs of infection during JAK inhibitor use.

The ROR signals for hematopoietic erythropenia, leukopenia, and thrombocytopenia were detected only with ruxolitinib. The AEs associated with ruxolitinib are often anemia and thrombocytopenia due to JAK2 inhibition; however, the treatment discontinuation rate is low [13, 14, 39]. Rates of new or worsening grade 3 or 4 anemia and thrombocytopenia have been reported in clinical trials of MF, with most new or worsening events occurring within the first 6 months of treatment [14, 40]. In a double-blind, placebo-controlled trial of ruxolitinib for MF, anemia, and thrombocytopenia were more common in ruxolitinib-treated patients than in placebo-treated patients. Still, the discontinuation rate was reported to be low (1 patient in each group for each event), and these AEs were manageable [39]. In our study, the time-toonset of AEs for ruxolitinib was concentrated around 4 months after the initiation of treatment, which is consistent with clinical trial reports. Erythropenia, leukopenia, and thrombocytopenia have also been reported in response to JAK inhibitors other than ruxolitinib. In a safety analysis of tofacitinib, lymphocytopenia was shown to be a risk factor for severe infections and HZ [41, 42]. Laboratory values in patients prescribed with JAK inhibitors should be closely monitored because lymphopenia may be missed if white blood cell percentages are not calculated.

Drug-induced liver injury is the leading cause of acute liver injury. In this study, AEs related to hepatitis B virus (HBV) reactivation were excluded to detect only druginduced liver dysfunction signals. In previous studies, JAK inhibitors did not appear to be drugs with an excep-

Category	Drug	Count	Median (IQR) ^a	α (95% CI) <u>⊧</u>	β (95% CI) [⊵]
Pneumonia	Peficitinib	20	123 (70.5–201)	114.07 (170.23–226.4)	1.18 (0.84–1.51)
	Tofacitinib	205	166 (57–309)	191.99 (217.4–242.82)	1.04 (0.94–1.13)
	Baricitinib	72	82.5 (46.0–200.5)	107.56 (132.99–158.42)	1.07 (0.91–1.23)
	Ruxolitinib	42	71.5 (25.3–235.5)	95.12 (134.42–173.73)	0.92 (0.73–1.1)
	Filgotinib	4	54.5 (22.8–146.8)	2.59 (108.32–214.05)	0.9 (0.33–1.46)
	Upadacitinib	23	69 (46.5–128.5)	83.66 (103.96–124.25)	1.86 (1.39–2.34)
	Peficitinib	5	183 (69–349)	68.81 (231.67–394.53)	1.1 (0.43–1.77)
	Tofacitinib	116	232 (73–402.8)	236.29 (271.78–307.27)	1.23 (1.08–1.38)
	Baricitinib	33	159 (66–308)	167.56 (228.19–288.83)	1.14 (0.88–1.4)
Herpes zoster	Ruxolitinib	7	242 (173.5–431.5)	213.41 (336.30–459.19)	1.79 (0.88–2.7)
	Filgotinib	2	323.5 (322.3–324.8)	322.16 (324.73–327.3)	155.24 (4.73–305.74
	Upadacitinib	19	129 (73.5–228)	107.32 (166.54–225.77)	1.11 (0.77–1.46)
	Peficitinib	1	36 (36–36)	с	с
	Tofacitinib	24	64 (26.8–325)	93.71 (172.25–250.8)	0.78 (0.57–0.98)
Hematopoietic	Baricitinib	13	78 (40–141)	66.69 (147.53–228.37)	0.88 (0.57–1.19)
erythropenia	Ruxolitinib	135	50 (25.5–105.5)	75.7 (90.67–105.64)	0.91 (0.81–1)
	Filgotinib	0			
	Upadacitinib	3	80 (78.5–186.5)	62.83 (169.15–275.48)	1.61 (0.44–2.78)
	Peficitinib	4	47 (33–58.8)	37.33 (50.11–62.88)	3.39 (1.03–5.75)
	Tofacitinib	27	105 (24–228.5)	68.65 (121.5–174.34)	0.76 (0.56–0.97)
Hematopoietic	Baricitinib	7	3 (2–5.5)	1.52 (7.53–13.54)	0.83 (0.47–1.19)
leukopenia	Ruxolitinib	29	31 (11–139)	43.82 (79.48–115.13)	0.72 (0.55–0.89)
	Filgotinib	0	-	-	-
	Upadacitinib	3	17 (17–29.5)	16.37 (28.80–41.23)	2.34 (0.64–4.04)
	Peficitinib	1	27 (27–27)	с	c
	Tofacitinib	6	161 (41.8–187.3)	5.98 (158.16–310.34)	0.73 (0.32–1.14)
Hematopoietic	Baricitinib	3	7 (7–160.5)	52.37 (-64.26–180.89)	0.56 (0.15–0.96)
thrombocytopenia	Ruxolitinib	100	37 (17.8–105.3)	61.75 (77.88–94.01)	0.84 (0.74–0.95)
	Filgotinib	0	-	-	-
	Upadacitinib	0	_	_	-

Table 4. Interquartile range and Weibull shape parameter of JAK inhibiter related AEs

Category	Drug	Count	Median (IQR) ^a	α (95% Cl)⊧	β (95% CI)⊧
Liver disorder	Peficitinib	2	362 (265.5–458.5)	160.85 (410.97–661.09)	2.02 (0.06–3.97)
	Tofacitinib	21	186 (73–234)	146.12 (208.64–271.17)	1.26 (0.90–1.62)
	Baricitinib	6	10 (5–18.8)	7.31 (14.41–21.51)	1.44 (0.68–2.21)
	Ruxolitinib	25	29 (10–91)	34.31 (71–107.68)	0.68 (0.51–0.84)
	Filgotinib	3	19 (12–120.5)	30.60 (-61.91–154.43)	0.67 (0.18–1.17)
	Upadacitinib	3	85 (55–281)	21.98 (-185.48–392.95)	0.90 (0.23–1.57)
	Peficitinib	12	70.5 (24–105.8)	49.00 (82.94–116.87)	1.23 (0.77–1.68)
	Tofacitinib	10	83 (24.8–185.8)	57.70 (120.73–183.76)	1.05 (0.62–1.49)
Renal impairment	Baricitinib	7	225 (98.5–273)	145.22 (259.77–374.31)	1.50 (0.79–2.2)
Renarimpairment	Ruxolitinib	16	67.5 (16.5–141.3)	48.08 (89.76–131.44)	0.93 (0.63–1.24)
	Filgotinib	2	65.5 (64.3–66.8)	64.09 (66.70–69.31)	31.42 (0.96–61.87
	Upadacitinib	0	-	-	-
	Peficitinib	10	98.5 (37.8–182.8)	53.18 (141.34–229.51)	0.88 (0.52–1.24)
	Tofacitinib	75	96 (30.5–227)	128.15 (160.26–192.37)	1 (0.85–1.15)
ILD	Baricitinib	21	142 (85–282)	163.53 (227.85–292.16)	1.34 (0.96–1.72)
ILD	Ruxolitinib	7	40 (35–74)	35.32 (84.57–133.83)	1.14 (0.64–1.64)
	Filgotinib	5	93 (84–117)	64.58 (96.45–128.31)	2.29 (0.74–3.85)
	Upadacitinib	14	81 (43–105)	66.43 (93.28–120.13)	1.61 (1.05–2.17)
	Peficitinib	6	202.5 (94.3–300.3)	110.00 (246.21–382.42)	1.28 (0.58–1.97)
	Tofacitinib	9	67 (65.0–122.)	64.70 (137.62–210.55)	1.10 (0.68–1.53)
Caudia a failuna	Baricitinib	2	136.5 (94.8–178.3)	41.69 (153.54–265.4)	1.69 (0.05–3.32)
Cardiac failure	Ruxolitinib	23	72 (25.0–197)	78.98 (141.24–203.51)	0.82 (0.61–1.04)
	Filgotinib	0	-	-	-
	Upadacitinib	0	-	-	-
	Peficitinib	13	211 (55–309)	160.09 (247.59–335.08)	1.36 (0.86–1.86)
	Tofacitinib	27	181 (41–285)	118.63 (196.43–274.22)	0.84 (0.62–1.06)
Embolic and	Baricitinib	26	93 (56.3–247)	109.97 (166.85–223.74)	0.99 (0.74–1.25)
thrombotic events	Ruxolitinib	2	19.5 (14.3–24.8)	8.49 (22.13–35.77)	1.99 (0.06–3.92)
	Filgotinib	3	15 (13–115.5)	23.12 (-66.67–156.46)	0.75 (0.2–1.3)
	Upadacitinib	2	42 (42–42)	С	с

Category	Drug	Count	Median (IQR) ^a	α (95% CI) ^ь	β (95% CI) [⊵]
Gastrointestinal perforation	Peficitinib	4	344 (256–430.3)	160.47 (375.28–590.1)	1.5 (0.43–2.56)
	Tofacitinib	12	36 (10–45.3)	15.65 (69.16–122.66)	0.65 (0.43–0.88)
	Baricitinib	2	58.5 (52.8–64.3)	50.39 (63.3–76.2)	6.02 (0.18–11.86
	Ruxolitinib	1	695 (695–695)	c	С
	Filgotinib	2	8 (8–8)	c	с
	Upadacitinib	1	18 (18–18)	c	с
Hyperglycemia	Peficitinib	0	-	-	-
	Tofacitinib	4	278.5 (258-356)	380.17 (245.9-514.44)	2.48 (0.97-3.99)
	Baricitinib	0	-	-	-
	Ruxolitinib	1	209 (209-209)	c	с
	Filgotinib	0	-	-	-
	Upadacitinib	0	-	-	-

^aInterquartile range, ^bConfident interval, 'Singular value decomposition did not converge in linear least squares.

PBR

tionally high risk of HBV-reactivation [43, 44]. The exact mechanism underlying JAK inhibitor-induced liver injury is not understood yet. The ROR signals of liver injury were detected only with ruxolitinib but not with the other JAK inhibitors. Liver injury is not the major AE for JAK inhibitors; however, monitoring liver enzymes is necessary because severe outcomes, including the development of liver failure, have been reported [45]. In our study, with ruxolitinib, most reports of liver injury occur about 3 months after initiation of treatment. Tofacitinib has a wider distribution at the time of hepatic injury onset than ruxolitinib. Therefore, it is considered necessary to monitor liver function not only during the initial period of drug initiation but also throughout its use.

The ROR signals for renal impairment were detected using peficitinib and filgotinib. A safety analysis of clinical trials of tofacitinib in RA reported a serum creatinine elevation of 1.5% as an AE, leading to discontinuation. In contrast, no serum creatinine elevation with long-term use was reported [41]. Serum creatinine should always be monitored during JAK inhibitor use, with early action warranted for elevated creatinine.

JAK inhibitors have not yielded consistent results in detecting ROR signals for interstitial pneumonia. ILD is the most common pulmonary manifestation of lung disease due to RA; hence, JAK inhibitors may not be a risk factor for interstitial pneumonia [46]. Although difficult in patients with pre-existing RA-related ILD, the development of parenchymal abnormalities should be appropriately evaluated before treatment, to differentiate between drug-induced pulmonary toxicity and pulmonary involvement due to the underlying disease. In our study, the shortest median time-to-onset of ILD with JAK inhibitors was 40.0 days for ruxolitinib, and the longest was 142.0 days for baricitinib. Patients should be monitored for symptoms of interstitial pneumonia, such as fever, cough, and dyspnea, especially during the first four months of using JAK inhibitors. They should be instructed to discontinue the drug immediately upon symptom onset.

ROR signals for thromboembolic-related events were detected with baricitinib and filgotinib, whereas those for heart failure were detected only with ruxolitinib. Dose-dependent increases in total, high-density, and low-density lipoprotein cholesterol levels have been reported following JAK inhibitor treatment [47]. However, no association has been reported with major adverse cardiovascular events [48, 49]. Inflammation causes hypercoagulability and is a risk factor for venous thromboembolism (VTE) and arterial thromboembolism, including DVT and PE. It has been reported that RA disease correlates with an increased risk of VTE [50]. Currently, there are reports of DVT and PE during JAK inhibitor use. However, the relationship between JAK inhibitors and an increased risk of these events is unclear [49]. In addition to the underlying disease, patient risk factors and case history should be carefully considered.

Gastrointestinal perforation can occur at any site in the gut, with the contents of the stomach or intestinal tract released into the abdominal cavity. In our study, JAK inhibitors were not associated with ROR signals for GP-related AEs. In a report on tofacitinib, most GPs occurred in the lower gastrointestinal tract, and most cases were treated with concomitant NSAIDs or glucocorticoids [32].

The incidence of GP has been reported to be higher with interleukin (IL)-6 inhibitors than with other antirheumatic drugs [51]. Although the detailed mechanism is unclear, IL-6 regulates vascular endothelial growth factor, which is involved in angiogenesis and tissue repair [52]. Dendritic cells derived from Peyer's patches in the intestinal submucosa express high levels of IL-6 and strongly induce IgA [53], which may derange the intestinal microbiota and delay tissue repair processes. Suppression of IL-6 signaling by JAK1 inhibition may result in GP. Timely diagnosis of GP is difficult as it is infrequent, and the timing of its occurrence is unpredictable. Nevertheless, it is a potentially serious AE that should not be overlooked.

Although reported infrequently, our study found no association between JAK inhibitor use and hyperglycemia (Table 1). To our knowledge, few reports exist on the relationship between JAKs and impaired glucose tolerance.

Analyses using SRS, such as the JADER database, have several notable limitations. Intrinsic problems with the SRS data include over-reporting, under-reporting, missing data, exclusion of healthy individuals, lack of denominators, and confounding factors [54]. It is improbable that the "true" risk of AEs will be evaluated without information on the total number of patients administered with JAK inhibitors. We adjusted for possible confounders in the database using multiple logistic regression methods. The adjusted ROR offers a rough indication of the signal strength, which can be used to generate hypotheses to search for unknown potential AEs. In clinical practice, the AE profile of JAK inhibitors in post-marketing real-world data remains to be established. The JADER is the primary tool available for pharmacovigilance because it is the world's largest and one of the most widely used databases. Although our results only support the basis of a phenomenon already known in the literature, our results, based on the evaluation of JADER, provide essential knowledge to improve our understanding of this issue. The timing of AE occurrence is also affected by different patient backgrounds. However, our results provide useful findings that reflect real-life scenarios, including the median timing of AE occurrence. This information may be particularly beneficial to prescribers.

Conclusion

Despite the inherent limitations of the SRS, we demonstrated the potential risks of JAK inhibitor use with real-world data. The present analysis shows that patients receiving peficitinib, tofacitinib, baricitinib, ruxolitinib, filgotinib, or upadacitinib should be closely monitored for AEs. The median onset of pneumonia and HZ with JAK inhibitor usage ranged from 2 to 6 months and 4 to 7 months, respectively. We believe that the data presented in this study will aid in detecting various AEs associated with JAK inhibitors early.

Ethical Considerations

Compliance with ethical guidelines

Ethical approval was not sought for this study because the study was a database-related observational study without directly involving any research subjects. All results were obtained from data openly available online from the PMDA website. All data from the JADER database were fully anonymized by the relevant regulatory authority before we accessed them.

Funding

This research was partially supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant No.: 21K06646 and 21K11100).

Authors' contributions

Conceptualization: Mitsuhiro Nakamura; Methodology: Hideyuki Tanaka, Mika Maezawa, Satoshi Nakao, Sakiko Hirofuji, Moe Yamashita, Kensuke Matsui, Nanaka Ichihara, and Yuka Nokura; Data collection: Hideyuki Tanaka, Mika Maezawa, Satoshi Nakao, Sakiko Hirofuji, Moe Yamashita, Kensuke Matsui, Nanaka Ichihara, and Yuka Nokura; Data analysis: Hideyuki Tanaka, Mika Maezawa, Satoshi Nakao, Sakiko Hirofuji, Moe Yamashita, Kensuke Matsui, Nanaka Ichihara, and Yuka Nokura; Investigation: Hideyuki Tanaka and Mika Maezawa; Writing the original draft: Hideyuki Tanaka, Mika Maezawa, and Mitsuhiro Nakamura; Review and editing: Mari Iwata, Mayumi Kitamura, Megumi Horibe, Hirofumi Tamaki, and Kazuhiro Iguchi; Supervision: Hideyuki Tanaka, Mika Maezawa, Satoshi Nakao, Sakiko Hirofuji, Moe Yamashita, Kensuke Matsui,

PBR Pharmaceutical & Biomedical Research

Nanaka Ichihara, Yuka Nokura, and Mitsuhiro Nakamura; Funding administration: Mitsuhiro Nakamura.

Conflict of interest

The authors declared no conflict of interest.

References

- Traves PG, Murray B, Campigotto F, Galien R, Meng A, Di Paolo JA. JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signaling by filgotinib, upadacitinib, tofacitinib and baricitinib. Ann Rheum Dis. 2021; 80(7):865-75. [DOI:10.1136/annrheumdis-2020-219012] [PMID]
- [2] Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine. 2019; 118:48-63. [DOI:10.1016/j. cyto.2018.03.041] [PMID]
- [3] Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018; 27(12):1984-2009. [DOI:10.1002/pro.3519] [PMID]
- [4] O'Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis. 2013; 72 Suppl 2(0 2):ii111-5. [DOI:10.1136/annrheumdis-2012-202576] [PMID]
- [5] Cantrell DA, Collins MK, Crumpton MJ. Autocrine regulation of T-lymphocyte proliferation: Differential induction of IL-2 and IL-2 receptor. Immunology. 1988; 65(3):343-9. [PMID]
- [6] Liao W, Lin JX, Leonard WJ. IL-2 family cytokines: New insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol. 2011; 23(5):598-604. [DOI:10.1016/j.coi.2011.08.003] [PMID]
- [7] Waldmann TA. The shared and contrasting roles of interleukin-2 (IL-2) and IL-15 in the life and death of normal and neoplastic lymphocytes: Implications for cancer therapy. Cancer Immunol Res. 2015; 3(3):219-27. [DOI:10.1158/2326-6066.CIR-15-0009] [PMID]
- [8] Harigai M, Honda S. Selectivity of janus kinase inhibitors in rheumatoid arthritis and other immune-mediated inflammatory diseases: Is expectation the root of all headache? Drugs. 2020; 80(12):1183-201. [DOI:10.1007/s40265-020-01349-1] [PMID]
- [9] Sarabia S, Ranjith B, Koppikar S, Wijeratne DT. Efficacy and safety of JAK inhibitors in the treatment of psoriasis and psoriatic arthritis: A systematic review and meta-analysis. BMC Rheumatol. 2022; 6(1):71. [DOI:10.1186/s41927-022-00287-7] [PMID]
- [10] Tran V, Shammas RM, Sauk JS, Padua D. Evaluating tofacitinib citrate in the treatment of moderate-to-severe active ulcerative colitis: Design, development and positioning of therapy. Clin Exp Gastroenterol. 2019; 12:179-91. [DOI:10.2147/CEG.S150908] [PMID]
- [11] Singh S, Murad MH, Fumery M, Dulai PS, Sandborn WJ. First- and second-line pharmacotherapies for patients with

moderate to severely active ulcerative colitis: An updated network meta-analysis. Clin Gastroenterol Hepatol. 2020; 18(10):2179-91.e6. [DOI:10.1016/j.cgh.2020.01.008] [PMID]

- [12] Rogler G. Efficacy of JAK inhibitors in Crohn's Disease. J Crohns Colitis. 2020; 14(Supplement_2):S746-54. [DOI:10.1093/ecco-jcc/jjz186] [PMID]
- [13] Kiladjian JJ, Zachee P, Hino M, Pane F, Masszi T, Harrison CN, et al. Long-term efficacy Lancet Haematol and safety of ruxolitinib versus best available therapy in polycythaemia vera (RESPONSE): 5-year follow up of a phase 3 study. Lancet Haematol. 2020; 7(3):e226-37. [DOI:10.1016/S2352-3026(19)30207-8] [PMID]
- [14] Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: Results of a median 3-year follow-up of COMFORT-I. Haematologica 2015; 100(4):479-88. [DOI:10.3324/haematol.2014.115840] [PMID]
- [15] Taylor PC. Clinical efficacy of launched JAK inhibitors in rheumatoid arthritis. Rheumatology (Oxford). 2019; 58(Suppl 1):17-i26. [DOI:10.1093/rheumatology/key225] [PMID]
- [16] Parmentier JM, Voss J, Graff C, Schwartz A, Argiriadi M, Friedman M, et al. In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494). BMC Rheumatol. 2018; 2:23. [DOI:10.1186/s41927-018-0031-x] [PMID]
- [17] Van Rompaey L, Galien R, van der Aar EM, Clement-Lacroix P, Nelles L, Smets B, et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J Immunol. 2013; 191(7):3568-77. [DOI:10.4049/jimmunol.1201348] [PMID]
- [18] Biggioggero M, Becciolini A, Crotti C, Agape E, Favalli EG. Upadacitinib and filgotinib: The role of JAK1 selective inhibition in the treatment of rheumatoid arthritis. Drugs Context. 2019; 8:212595. [DOI:10.7573/dic.212595] [PMID]
- [19] Takeuchi T, Tanaka Y, Iwasaki M, Ishikura H, Saeki S, Kaneko Y. Efficacy and safety of the oral Janus kinase inhibitor peficitinib (ASP015K) monotherapy in patients with moderate to severe rheumatoid arthritis in Japan: A12-week, randomised, double-blind, placebo-controlled phase IIb study. Ann Rheum Dis. 2016; 75(6):1057-64. [DOI:10.1136/ annrheumdis-2015-208279] [PMID]
- [20] Harrington R, Al Nokhatha SA, Conway R. JAK inhibitors in rheumatoid arthritis: An evidence-based review on the emerging clinical data. J Inflamm. Res. 2020; 13:519-31. [DOI:10.2147/JIR.S219586] [PMID]
- [21] Winthrop KL, Yamanaka H, Valdez H, Mortensen E, Chew R, Krishnaswami S, et al. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014; 66(10):2675-84. [DOI:10.1002/art.38745] [PMID]
- [22] Curtis JR, Yamaoka K, Chen YH, Bhatt DL, Gunay LM, Sugiyama N, et al. Malignancy risk with tofacitinib versus TNF inhibitors in rheumatoid arthritis: Results from the open-label, randomised controlled ORAL Surveillance trial. Ann Rheum Dis. 2023; 82(3):331-43. [DOI:10.1136/ard-2022-222543] [PMID]
- [23] Food and Drug Administration. FDA requires warnings about increased risk of serious heart-related events, cancer, blood clots, and death for JAK inhibitors that treat certain

chronic inflammatory conditions. Maryland: Food and Drug Administration; 2022. [Link]

- [24] Pharmaceuticals and Medical Devices Agency. Japanese Adverse Drug Event Report (JADER) database. Tokyo: Pharmaceuticals and Medical Devices Agency; 2024.
- [25] MariaDB. MariaDB documentation [Internet]. 2024 [Updated 11 November 2024]. Available from: [Link]
- [26] The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Medical dictionary for regulatory activities [Internet]. 2023 [Updated 24 June 2023]. Available from: [Link]
- [27] Poluzzi E, Raschi E, Piccinni C, De F. Data mining techniques in pharmacovigilance: Analysis of the publicly accessible FDA adverse event reporting system (AERS). In: Karahoca A, editor. Data mining applications in engineering and medicine. London: InTech; 2012. [DOI:10.5772/50095]
- [28] Statsmodels. Statsmodels: statistical models in python. Version 0.13.2 [Internet]. 2022 [Updated 2023 June 24]. Available from: [Link]
- [29] Nakamura M, Umetsu R, Abe J, Matsui T, Ueda N, Kato Y, et al. Analysis of the time-to-onset of osteonecrosis of jaw with bisphosphonate treatment using the data from a spontaneous reporting system of adverse drug events. J Pharm Health Care Sci. 2015; 1:34. [DOI:10.1186/s40780-015-0035-2] [PMID]
- [30] Hatahira H, Abe J, Hane Y, Matsui T, Sasaoka S, Motooka Y, et al. Drug-induced gingival hyperplasia: A retrospective study using spontaneous reporting system databases. J Pharm Health Care Sci. 2017; 3:19. [DOI:10.1186/s40780-017-0088-5] [PMID]
- [31] Taylor J, Ross T. SurPyval: Survival and reliability analysis in python. Version 0.10.1.0 [Internet]. 2022 [Updated 11 November 2024]. Available from: [Link]
- [32] Cohen SB, Tanaka Y, Mariette X, Curtis JR, Lee EB, Nash P, et al. Long-term safety of tofacitinib up to 9.5 years: A comprehensive integrated analysis of the rheumatoid arthritis clinical development programme. RMD Open. 2020; 6(3):e001395. [DOI:10.1136/rmdopen-2020-001395] [PMID]
- [33] Taylor PC, Takeuchi T, Burmester GR, Durez P, Smolen JS, Deberdt W, et al. Safety of baricitinib for the treatment of rheumatoid arthritis over a median of 4.6 and up to 9.3 years of treatment: Final results from long-term extension study and integrated database. Ann Rheum Dis. 2022; 81(3):335-43. [DOI:10.1136/annrheumdis-2021-221276] [PMID]
- [34] Cohen SB, van Vollenhoven RF, Winthrop KL, Zerbini CAF, Tanaka Y, Bessette L, et al. Safety profile of upadacitinib in rheumatoid arthritis: Integrated analysis from the SE-LECT phase III clinical programme. Ann Rheum Dis. 2021; 80(3):304-311. [DOI:10.1136/annrheumdis-2020-218510] [PMID]
- [35] Takeuchi T, Tanaka Y, Tanaka S, Kawakami A, Song YW, Chen YH, et al. Safety and effectiveness of peficitinib (AS-P015K) in patients with rheumatoid arthritis: final results (32 months of mean peficitinib treatment) from a long-term, open-label extension study in Japan, Korea, and Taiwan. Rheumatol Ther. 2021 ;8(1):425-42. [DOI:10.1007/s40744-021-00280-5] [PMID]

- [36] Winthrop KL, Tanaka Y, Takeuchi T, Kivitz A, Matzkies F, Genovese MC, et al. Integrated safety analysis of filgotinib in patients with moderately to severely active rheumatoid arthritis receiving treatment over a median of 1.6 years. Ann Rheum Dis. 2022; 81(2):184-92. [DOI:10.1136/annrheumdis-2021-221051] [PMID]
- [37] Saguil A, Kane S, Mercado M, Lauters R. Herpes zoster and postherpetic neuralgia: Prevention and management. Am Fam Physician. 2017; 96(10):656-63. [PMID]
- [38] Marra F, Parhar K, Huang B, Vadlamudi N. Risk factors for herpes zoster infection: A meta-analysis. Open Forum Infect Dis. 2020; 7(1):ofaa005. [DOI:10.1093/ofid/ofaa005] [PMID]
- [39] Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012; 366(9):799-807. [DOI:10.1056/NEJMoa1110557] [PMID]
- [40] Arana Yi C, Tam CS, Verstovsek S. Efficacy and safety of ruxolitinib in the treatment of patients with myelofibrosis. Future Oncol. 2015; 11(5):719-33. [DOI:10.2217/fon.14.272] [PMID]
- [41] Wollenhaupt J, Lee EB, Curtis JR, Silverfield J, Terry K, Soma K, et al. Safety and efficacy of tofacitinib for up to 9.5 years in the treatment of rheumatoid arthritis: Final results of a global, open-label, long-term extension study. Arthritis Res Ther. 2019; 21(1):89. [DOI:10.1186/s13075-019-1866-2] [PMID]
- [42] van Vollenhoven R, Lee EB, Strengholt S, Mojcik C, Valdez H, Krishnaswami S, et al. Evaluation of the short-, mid-, and long-term effects of tofacitinib on lymphocytes in patients with rheumatoid arthritis. Arthritis Rheumatol. 2019; 71(5):685-95. [DOI:10.1002/art.40780] [PMID]
- [43] Harigai M, Winthrop K, Takeuchi T, Hsieh TY, Chen YM, Smolen JS, et al. Evaluation of hepatitis B virus in clinical trials of baricitinib in rheumatoid arthritis. RMD Open. 2020; 6(1):e001095. [DOI:10.1136/rmdopen-2019-001095] [PMID]
- [44] Pan C, Cao M, Yan C, Ou X, Zhang X, Xu W, et al. Hepatitis B virus reactivation associated with Janus kinase (JAK) inhibitors: A retrospective study of pharmacovigilance databases and review of the literature. Expert Opin Drug Saf. 2023; 22(6):469-76. [DOI:10.1080/14740338.2023.2181339] [PMID]
- [45] Mardani M, Mohammadshahi J, Abolghasemi S, Teimourpour R. Drug-induced liver injury due to tofacitinib: A case report. J Med Case Rep. 2023; 17(1):97. [DOI:10.1186/s13256-023-03821-4] [PMID]
- [46] Shaw M, Collins BF, Ho LA, Raghu G. Rheumatoid arthritis-associated lung disease. Eur Respir Rev. 2015; 24(135):1-16. [DOI:10.1183/09059180.00008014] [PMID]
- [47] Taylor PC, Kremer JM, Emery P, Zuckerman SH, Ruotolo G, Zhong J, et al. Lipid profile and effect of statin treatment in pooled phase II and phase III baricitinib studies. Ann Rheum Dis. 2018; 77(7):988-95. [DOI:10.1136/annrheumdis-2017-212461] [PMID]
- [48] Charles-Schoeman C, Wicker P, Gonzalez-Gay MA, Boy M, Zuckerman A, Soma K, et al. Cardiovascular safety findings in patients with rheumatoid arthritis treated with tofacitinib, an oral Janus kinase inhibitor. Semin Arthritis Rheum. 2016; 46(3):261-71. [DOI:10.1016/j.semarthrit.2016.05.014] [PMID]

- [49] Taylor PC, Weinblatt ME, Burmester GR, Rooney TP, Witt S, Walls CD, et al. Cardiovascular safety during treatment with baricitinib in rheumatoid arthritis. Arthritis Rheumatol. 2019; 71(7):1042-55. [DOI:10.1002/art.40841] [PMID]
- [50] Molander V, Bower H, Frisell T, Askling J. Risk of venous thromboembolism in rheumatoid arthritis, and its association with disease activity: A nationwide cohort study from Sweden. Ann Rheum Dis. 2021; 80(2):169-75. [DOI:10.1136/ annrheumdis-2020-218419] [PMID]
- [51] Strangfeld A, Richter A, Siegmund B, Herzer P, Rockwitz K, Demary W, et al. Risk for lower intestinal perforations in patients with rheumatoid arthritis treated with tocilizumab in comparison to treatment with other biologic or conventional synthetic DMARDs. Ann Rheum Dis. 2017; 76(3):504-10. [DOI:10.1136/annrheumdis-2016-209773] [PMID]
- [52] Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T, Yoshizaki K, et al. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum. 2003; 48(6):1521-9. [DOI:10.1002/art.11143] [PMID]
- [53] Sato A, Hashiguchi M, Toda E, Iwasaki A, Hachimura S, Kaminogawa S. CD11b+ Peyer's patch dendritic cells secrete IL-6 and induce IgA secretion from naive B cells. J Immunol. 2003; 171(7):3684-90. [DOI:10.4049/jimmunol.171.7.3684] [PMID]
- [54] van Puijenbroek EP, Bate A, Leufkens HG, Lindquist M, Orre R, Egberts AC. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf. 2002; 11(1):3-10. [DOI:10.1002/pds.668] [PMID]

This Page Intentionally Left Blank