Review Article

Plant cells technology as an effective biotechnological approach for high scale production of pharmaceutical natural compounds: A meta-analysis study

Ali Davoodi1, Elnaz Khoshvishkaie2, Mohammad Azadbakht1*

1Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
2Pharmaceutical Cares Department, Ayatollah Khamenei Hospital, Mazandaran University of Medical Sciences, Abbas Abad, Iran

ARTICLE INFO

Corresponding author:
akht110@gmail.com

Article history:
Received: Feb 3, 2019
Accepted: Apr 11, 2019

Keywords:
Plant cell,
hairy root,
callus,
imobilized cell,
meta-analysis

ABSTRACT

Natural-based drugs are the important bioactive substances that have been used for prevention and treatment of diseases. Natural products are prepared in commercial scale from relevant medicinal plants. Hence, large amounts of the plants are needed for extraction and isolation of naturally occurring compounds. Plant cells technology is the best strategy for the production of the plant-derived drugs, which have difficulty process in large scale production. This study was conducted for types, frequencies and efficacies of production methods for natural-based drugs in plant cell technology as an alternative method to preparation from whole herb. Pharmaceutical and biomedical databases including PubMed/Medline, Scopus, Web of Science, Embase, ProQuest and Google Scholar were searched in this study. Moreover, keywords words were "secondary metabolite production", "pharmaceutical natural compounds", "high scale production", "cell suspension", "immobilized plant cell", "hairy root", "elicitor", "substrate", "plant cell", "callus", "medicinal plants", "isolation and purification". The correlations have been investigated by random effect model in an Excel program. Findings of this meta-analysis study showed all production methods had high efficacies and percentages of high scale production from 90 to 100%, which were comparable with conventional direct extractions. In addition to, median efficacy values for cell suspension, callus, hairy root and immobilized plant cell methods in production of selected drugs (atropine, paclitaxel, vincristine, camptothecin and colchicine) with 1124, 257, 797 and 969 events were 92.49 (CI 95%, 95.69), 95.86), 91.98 (CI 95%, 91.12-96.35), respectively. The plant cell technology for production of secondary metabolites has various advantages including high accuracy, repeatability and productivity, that is a best strategy for production of natural-based drugs.

Introduction

Natural-based drugs are the important bioactive substances, which have been used for prevention and treatment of diseases. Moreover, several diseases are need to develop the novel drugs with the higher efficacies and low side effects. Natural sources play important roles in production of drugs. Surprisingly, some natural-based drugs are the only choices for the prevention and treatment of the relevant diseases. In addition to, natural-based compounds especially plant-based isolated substances are the main important patterns for the effective drug design in drug discovery studies (1, 2). Several classes of phytochemical compounds especially alkaloids, saponins, terpenoids and flavonoids have been used in the medicinal purposes. These compounds have been isolated from the important plant families. For instance, Atropa, Scopolia, Duboisia, Datura, Hyoscyamus and Mandragora plants from Solanaceae family have anticholinergic alkaloids, Catharanthus plant from Apocynaceae family and Taxus plant from Taxaceae family have the anticancer alkaloids, Artemisia plant from Asteraceae family contains antimalarial sesquiterpene lactones, and Papaver plants from Papaveraceae family contains antinociceptive and antitussive alkaloids. Moreover, fungi and marine sources contain some similar compounds (3-9). Table 1 shows the important plant-based drugs, occurring plants, structural formula, medicinal uses and mechanisms of action. These natural-based drugs should be produced in commercial scale using relevant medicinal plants, which are cultivated or existed in the nature. Hence, large amounts of the plants are needed for extraction and isolation of the mentioned compounds that threatening the environment and living organisms in most cases. Extraction of paclitaxel from the bark of Taxus brevifolia is one of the examples, which is damage to the plant. Then, the alternative methods should be used for the production of natural-based drugs especially the plant-derived compounds (10, 11).

Plant cells technology is the best strategy for the production of the plant-derived drugs. This technology is proceeded using two cell types, generally, genetic-modified cells and/or genetic unmodified cells. Type 1 cells were produced by DNA modifications for production of more yielding cells. Unlike that, type 2 cells have been used with effective substrates and elicitors for high scale production of plants secondary metabolites especially natural-based drugs (12, 13). Several methods have been used for high scale
Table 1 The main important pharmaceutical natural compounds.

<table>
<thead>
<tr>
<th>Plant-based drugs</th>
<th>Structural classification</th>
<th>Structural formula</th>
<th>Main source(s)</th>
<th>Mechanism(s) of action</th>
<th>Medicinal use(s)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemisinin*</td>
<td>Sesquiterpene lactone terpenoid</td>
<td></td>
<td>Artemisia annua L., Asteraceae family</td>
<td>Production of free radicals and damage to susceptible cells</td>
<td>Parasitic diseases such as malaria, cancer diseases, Autoimmune diseases</td>
<td>[36-38]</td>
</tr>
<tr>
<td>Atropine</td>
<td>Tropane alkaloid</td>
<td></td>
<td>Atropa belladonna L., Solanaceae Family</td>
<td>Peripheral anticholinergic with antimuscarinic activity</td>
<td>Poisoning diseases, Cardiovascular diseases</td>
<td>[33, 39]</td>
</tr>
<tr>
<td>Caffeine</td>
<td>Methylxanthine alkaloid</td>
<td></td>
<td>Camellia sinensis (L.) Kuntze, Theaceae Family, Coffea arabica L., Rubiaceae family</td>
<td>Adenosine receptor antagonist, Monoamine neurotransmitter releaser</td>
<td>Pulmonary diseases, Cardiovascular diseases</td>
<td>[40, 41]</td>
</tr>
<tr>
<td>Camptothecin</td>
<td>Quinoline alkaloid</td>
<td></td>
<td>Camptotheca acuminata Decne., Nyssaceae family</td>
<td>Topoisomerase Inhibitor</td>
<td>Cancer diseases</td>
<td>[42, 43]</td>
</tr>
<tr>
<td>Cocaine</td>
<td>Tropane alkaloid</td>
<td></td>
<td>Erythroxylum coca Lams., Erythroxylaceae family</td>
<td>Sodium Channel Blocker, Monoamine Neurotransmitters Reuptake Inhibitor, Monoamine Neurotransmitters Receptor agonist</td>
<td>Local anesthetics</td>
<td>[44, 45]</td>
</tr>
<tr>
<td>Codeine</td>
<td>Modified benzyltetrahydroisoquinoline alkaloids</td>
<td></td>
<td>Papaver somniferum L., Papaveraceae family</td>
<td>μ-Opioid receptor agonist</td>
<td>Cough, Pain</td>
<td>[46, 47]</td>
</tr>
<tr>
<td>Colchicine</td>
<td>Tropolone alkaloid</td>
<td></td>
<td>Colchicum autumnale L., Colchicaceae family</td>
<td>Antitubulin agent, Proinflammatory inhibitor</td>
<td>Gout disease, Cancer diseases</td>
<td>[40, 49]</td>
</tr>
<tr>
<td>Ephedrine</td>
<td>Phenethylamine alkaloid</td>
<td></td>
<td>Ephedra sinica Stapf., Ephedraceae family</td>
<td>Sympathomimetic agent</td>
<td>Motion sickness, Pulmonary diseases</td>
<td>[50, 51]</td>
</tr>
<tr>
<td>Galantamine</td>
<td>Benzazepine alkaloid</td>
<td></td>
<td>Galanthus caucasicus (Baker) Grossh., Galanthus woronowii Lessink., Amaryllidaceae family</td>
<td>Brain acetylcholinesterase enzyme inhibitor</td>
<td>Alzheimer’s disease</td>
<td>[52, 53]</td>
</tr>
<tr>
<td>Hyoscine</td>
<td>Tropane alkaloid</td>
<td></td>
<td>Scopolia carmiolica Jacq., Hyoscyamus niger L., Solanaceae family</td>
<td>Peripheral anticholinergic with antimuscarinic activity</td>
<td>Motion sickness, Gastro-intestinal diseases, uro-genital diseases</td>
<td>[54, 55]</td>
</tr>
<tr>
<td>L-Dopa</td>
<td>Dihydroxyphenylalanin alkaloid</td>
<td></td>
<td>Mucuna pruriens (L.) DC., Vicia faba L., Fabaceae Family</td>
<td>Dopaminergic Agent</td>
<td>Parkinson’s Disease</td>
<td>[56, 57]</td>
</tr>
<tr>
<td>Morphine</td>
<td>Modified benzyltetrahydroisoquinoline alkaloids</td>
<td></td>
<td>Papaver somniferum L., Papaveraceae Family</td>
<td>μ- and δ-Opioid Receptor Agonist</td>
<td>Severe Pains</td>
<td>[58, 59]</td>
</tr>
<tr>
<td>Nicotine</td>
<td>Pyrrolidine alkaloid</td>
<td></td>
<td>Nicotiana tabacum L., Solanaceae family</td>
<td>Nicotinic acetylcholine receptors agonist</td>
<td>Smoke diseases</td>
<td>[60, 61]</td>
</tr>
<tr>
<td>Omacetaxine</td>
<td>Benzazepine dioxin alkaloid</td>
<td></td>
<td>Cephalotaxus harringtonii (Knight ex J. Forbes) K. Koch, Cephalotaxaceae family</td>
<td>Protein translation inhibitor</td>
<td>Cancer diseases</td>
<td>[62, 63]</td>
</tr>
</tbody>
</table>
production of plant secondary metabolites with two mentioned cell types including cell suspensions, cell masses such as callus, hairy roots and immobilized plant cells (Fig. 1).

In addition to, the cells are need to optimize cultural conditions (apparatus, temperature, pH, airflow, medium, substrates, elicitor, etc.) for high-yielding production (13-18). Table 2 shows the production methods with their preparation procedures, advantages and disadvantages. In cell suspension method, productive cells have been directly used. Hairy root and callus methods are used using differentiated

<table>
<thead>
<tr>
<th>Compound</th>
<th>Type</th>
<th>Plant Source</th>
<th>Activity</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paclitaxel</td>
<td>Taxol alkaloid</td>
<td>Taxus brevifolia Nutt.,</td>
<td>Antitubulin agent</td>
<td>Cancer diseases</td>
</tr>
<tr>
<td>Physostigmine</td>
<td>Pyrrolidine alkaloids</td>
<td>Physostigma venenosum Halls,</td>
<td>Acetylcholinesterase enzyme inhibitor</td>
<td>Eye diseases, Gastro-intestinal diseases</td>
</tr>
<tr>
<td>Pilocarpine</td>
<td>Imidazole alkaloids</td>
<td>Pilocarpus jahorandi Holmes,</td>
<td>Direct cholinergic agent</td>
<td>Gastro-intestinal Diseases, Especially Xerostomia, Eye Diseases</td>
</tr>
<tr>
<td>Podophyllotoxin</td>
<td>Aryl tetralin lignan</td>
<td>Podophyllum peltatum L,</td>
<td>Antitubulin agent, deactivator, DNA</td>
<td>Cancer diseases, Viral diseases</td>
</tr>
<tr>
<td>Quinidine</td>
<td>Quinoline alkaloids</td>
<td>Cinchona officinalis L,</td>
<td>Na⁺/K⁺-ATPase enzyme transporter blocker</td>
<td>Cardiovascular diseases especially arrhythmia</td>
</tr>
<tr>
<td>Quinine</td>
<td>Quinoline alkaloids</td>
<td>Cinchona officinalis L,</td>
<td>Hemozoin biocrystallization inhibitor, Purine nucleoside phosphorylase enzyme inhibitor</td>
<td>Parasitic diseases especially malaria</td>
</tr>
<tr>
<td>Tubocurarine</td>
<td>Benzyl tetrahydroisoquinoline alkaloids</td>
<td>Chondrodendron tomentosum,</td>
<td>Neur muscular blocker, non-depolarizing activity</td>
<td>Anesthesia</td>
</tr>
<tr>
<td>Vinblastine</td>
<td>Terpenoid indole alkaloids</td>
<td>Catharanthus roseus (L), G.,</td>
<td>Antitubulin agent</td>
<td>Cancer diseases</td>
</tr>
<tr>
<td>Vinoreistine</td>
<td>Terpenoid indole alkaloids</td>
<td>Catharanthus roseus (L), G.,</td>
<td>Antitubulin agent</td>
<td>Cancer diseases</td>
</tr>
<tr>
<td>Yohimbine</td>
<td>Indoloquinolizidine alkaloid</td>
<td>Pausinystalus yohimbine (K.Schum.) Pierre ex Beille,</td>
<td>Sympatholytic agent with α-receptors antagonism activity</td>
<td>Uro-genital diseases</td>
</tr>
</tbody>
</table>

*An important semisynthetic drug.
and undifferentiated cell masses, respectively. Unlike those, immobilized plant cells have been prepared by immobilization of cells on some matrices including macromolecules such as calcium alginate, agar, carrageenan and some polymers such as polyethylene and polystyrene. This immobilization can be helps to decrease cell damages, increase the productivity of cells and increase production of the secondary metabolites (5, 11, 19-22).

This meta-analysis study provides the data from selected relevant studies about types, frequencies and efficacies of production methods of selected natural-based drugs and important naturally occurring drugs. Moreover, we analyzed the results of these studies with regards to efficacy of secondary metabolite production especially the approved drugs by cell technologies as alternative methods to herbs. Finally, the main methods for extraction, isolation, structure elucidation and physicochemical evaluation of produced drugs have been presented.

Methods for production

In the study, four main methods for production of five high important plant-based drugs including atropine, paclitaxel, vincristine, camptothecin and colchicine, have been selected and evaluated. Table 3 shows the main methods and plant sources for production of mentioned drugs. According to the results, the frequency of cell suspension, callus, hairy root and immobilized plant cell methods for production of the drugs were 35.72, 8.17, 25.33 and 30.79%, respectively.

Meta-analysis

All data for high scale production of secondary metabolites and five selected drugs (atropine, paclitaxel, vincristine, camptothecin and colchicine) were extracted and collected from peer-reviewed original articles that have been obtained from scientific journals. Moreover, data have been filtered and removed the duplicate cases and arranged by Microsoft Excel® software. The final data were coded including: the percentages of methods and effective methods. In addition to, number of cases, amounts of all methods and outcomes have been calculated based on the obtained data and all cases have been analyzed by Neyeloff2012 method (Random-effect model) (24).

Discussion

Various parameters determine the amount of secondary metabolite production including medium of culture, temperature, airflow, CO$_2$ and O$_2$.
Table 2 The main methods for production of secondary metabolites in high scale with their preparation procedures, advantages and disadvantages

<table>
<thead>
<tr>
<th>Production methods</th>
<th>Preparation procedures</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Suspension</td>
<td>Cells isolated from plant organs and cultivated with suspension form in medium.</td>
<td>1. High scale production in optimized condition</td>
<td>1. Low stability</td>
<td>[14,82]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Usable in many plants</td>
<td>2. Low commerciality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Low productivity</td>
<td>3. Low productivity</td>
<td></td>
</tr>
<tr>
<td>Callus</td>
<td>Cells isolated from plant organs and cultivated to forms a biomass in medium.</td>
<td>1. High scale production in optimized condition.</td>
<td>1. Low commerciality.</td>
<td>[83,84]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Usable in many plants</td>
<td>2. Moderate productivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Higher stability than cell suspension</td>
<td>3. Moderate affordability</td>
<td></td>
</tr>
<tr>
<td>Hairy Root</td>
<td>Cells isolated from plant organ and differentiated to hairy roots by bacterial inoculation in medium.</td>
<td>1. High scale production in optimized condition.</td>
<td>1. Difficult stages for preparation.</td>
<td>[85,86]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Higher stability than cell suspension</td>
<td>2. Do not usable for all plants</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. High affordable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. High commerciality</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. High commerciality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immobilized Plant</td>
<td>Cells isolated from plant organs and cultivated with suspension form in medium.</td>
<td>1. High scale production in optimized condition.</td>
<td>1. Difficult stages for preparation.</td>
<td>[13,87]</td>
</tr>
<tr>
<td>Cell</td>
<td>Finally, cells were immobilized on a matrix.</td>
<td>2. Higher stability than cell suspension</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Usable in many plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. High Affordable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. High Commerciality</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 The main methods for production of selected natural-based drugs and selected plants for high scale production.

<table>
<thead>
<tr>
<th>Plant-based drug</th>
<th>Main production method</th>
<th>Plant and cell line</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atropine</td>
<td>Hairy root</td>
<td>Hyoscyamus reticulatus L.</td>
<td>[88]</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>Cell suspension</td>
<td>Taxas baccata L.</td>
<td>[89]</td>
</tr>
<tr>
<td>Vincristine</td>
<td>Immobilized plant cell</td>
<td>Catharanthus roseus (L) G.Don</td>
<td>[78]</td>
</tr>
<tr>
<td>Camptothecin</td>
<td>Hairy root</td>
<td>Camptotheca acuminata Decne.</td>
<td>[90]</td>
</tr>
<tr>
<td>Colchicine</td>
<td>Hairy root</td>
<td>Gloriosa superba L.</td>
<td>[25]</td>
</tr>
</tbody>
</table>

concentrations, salts, Ca, P and N concentrations and existence of substrates. In addition, some drugs are needed specific condition for high scale production (25). In addition to, plant-based drugs after production using cell technology should be isolated and purified from culture. Several methods have been used for isolation and purification of the drugs such as crystallization, precipitation and centrifugation (26-28). The chemical structure of the drugs have been identified using analytical methods such as 1HNMR, 13CNMR, DEPT, COSY, NOESY, HMBC, IR, UV and MASS (29, 30). Physicochemical and pharmacokinetic properties of all produced drugs should be analyzed using pharmacopeial methods including macroscopic and crystal properties, purity, moisture contents, foreign matter, ash values, assay, bioavailability, body distribution, metabolism and body excretion. These parameters determine the quality of the drugs for future clinical usage (31, 32). Based on the meta-analyses results, the efficacy values of more important methods for production of the plant-based drugs were approximately 90% to 100%. Many attempts have been done for optimization of production of the plant-based drugs by alternative methods, but no extensive studies have been done for determination of efficacy of these methods. Paclitaxel as an important anticancer drug that has been produced by cell suspension methods with cells of bark of Taxus brevifolia plant from Taxaceae family (10). In that study, the suspension of cells from the plant bark has been prepared and cultured in MS (Murashige and Skoog) medium for a few days and paclitaxel is extracted from final cell suspension. Moreover, Khosrnushahi et al. demonstrated that salicylic acid and fungal elicitors increased the
production of paclitaxel 1000-fold higher than other elicitors. This process was more effective than extraction of paclitaxel from the relevant plant. Shakeran et al. produced the high scale of atropine by *Datura metel* hairy roots. The biotic and abiotic elicitors as calcium phosphate and yeasts were used for production of atropine for optimization. According to the results, atropine was produced 2-fold higher than control group.

In addition to, the use of the mentioned method can be Affordable in pharmaceutical manufacturing of active pharmaceutical ingredients (33). Mohamed et al. produced alkaloids especially vincristine using immobilized *Catharanthus roseus* cells from Apocynaceae family. The alkaloids were produced in high scale by variation of the culture conditions (34). Hypericin is a naphthodianthrone compound isolated from *Hypericum perforatum* plant from Hypericaceae family has been used for many diseases such as cancer. This natural product was produced using *H. perforatum* hairy root with about 75-fold higher than primary conditions (11). In a study that published by Werner et al., bioreactor technologies were introduced as the effective methods for sustainable production of valuable plant cell-derived products. In this review study different aspects especially economically justifiability have been evaluated (35). All alternative methods for production of secondary metabolites can be helps to prepare the naturally occurring drugs, especially compounds with difficult synthesis process. The plant cells technology protects plants from their extinction, it is unnecessary to cut high amounts of plants for production of drugs at high scale. Therefore, secondary metabolite production technologies are very applicable in pharmaceutical industries.

Conclusion

The plant cell technology is an important strategy for production of plant-based drugs. It has several advantages such as high accuracy, repeatability and productivity, then, this technology can be use instead of whole herbs. These methods should be optimized and commercialized for each natural compound.

Acknowledgement

This research was a part of PhD thesis of Dr. Ali Davoodi, PharmD, supervised by Professor Mohammad Azadbakht. This study was financially supported by Mazandaran University of Medical Sciences (Funding code: 1396-1102).

Conflict of interest

The authors have no conflict of interest.

References

4. Shokrzadeh M, Azadbakh M, Ahangar N, Hashemi A, Saeedi Saravi SS. Cytotoxicity of hydro-alcoholic extracts of...

prodrugs with enhanced efficacy against primary cancer cells. Theranostics 2016;6:1065-74.
47. Gardiner SJ, Chang AB, Marchant JM, Petkly HL. Codeine versus placebo for chronic cough in children. Cochr Data Syst Rev 2016;7:22-
55. Golding JF, Wesnes KA, Leaker BR. The effects of the selective muscarinic M3 receptor antagonist darifenacin, and of hyoscine (scopolamine), on motion sickness, skin conductance and cognitive function. British J Clinical Pharmacol 2018;84:1535-43.

